In this paper, we define and study z-small quasi-Dedekind as a generalization of small quasi-Dedekind modules. A submodule of -module is called z-small ( if whenever , then . Also, is called a z-small quasi-Dedekind module if for all implies . We also describe some of their properties and characterizations. Finally, some examples are given.
The topological indices are functions on the graph that do not depend on the labeling of their vertices. They are used by chemists for studying the properties of chemical compounds. Let be a simple connected graph. The Hyper-Zagreb index of the graph , is defined as ,where and are the degrees of vertex and , respectively. In this paper, we study the Hyper-Zagreb index and give upper and lower bounds for .
There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into
... Show MoreThe logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables. The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.
... Show MoreLet be a commutative ring with identity and be an -module. In this work, we present the concept of semi--maximal sumodule as a generalization of -maximal submodule.
We present that a submodule of an -module is a semi--maximal (sortly --max) submodule if is a semisimple -module (where is a submodule of ). We investegate some properties of these kinds of modules.
The purpose of this research is to design a list of the scientific and moral values that should be found in the content of the computer textbook for the second intermediate grade, as well as to analyze the content of the above- mentioned book by answering the following question:
What is the percentage of availability of scientific and moral values in the content of the computer textbook for Second Intermediate grade issued by the Iraqi Ministry of Education / the general directorate of the curriculum, for the academic year (2017-2018)?
In order to achieve the research objectives, the descriptive method (content analysis method) was adopted. The research community has been iden
... Show MoreBackground: Lung cancer is a disease in which cells in the lung grow out of control and may spread to lymph nodes or other organs in the body such as the brain. Cancer from other organs also may spread to the lungs. The chance that a man will develop lung cancer in his lifetime is about 1 in 15; for a woman, the risk is about 1 in 17. These numbers include both people who smoke and those who don't smoke. Worldwide; prevalence of the lung cancer was decreased in the last decade.
Objectives: To determine the prevalence of lung cancer in Al Nagaf Governorate during 2019 and 2020
Patients and Methods:
A Registry-based cross sectional study was conduct
... Show MoreThis paper presents a new numerical method for the solution of ordinary differential equations (ODE). The linear second-order equations considered herein are solved using operational matrices of Wang-Ball Polynomials. By the improvement of the operational matrix, the singularity of the ODE is removed, hence ensuring that a solution is obtained. In order to show the employability of the method, several problems were considered. The results indicate that the method is suitable to obtain accurate solutions.
The main aim of this research is to present and to study several basic characteristics of the idea of FI-extending semimodules. The semimodule is said to be an FI-extending semimodule if each fully invariant subsemimodule of is essential in direct summand of . The behavior of the FI-extending semimodule with respect to direct summands as well as the direct sum is considered. In addition, the relationship between the singularity and FI-extending semimodule has been studied and investigated. Finally extending propertywhich is stronger than FI extending, that has some results related to FI-extending and singularity is also investigated.
In this paper we will study some of the properties of an operator by looking at the associated S-act of this operator, and conversely. We look at some operators, like one to one operators, onto operators. On the other hand, we look at some act theoretic concepts, like faithful acts, finitely generated acts, singular acts, separated acts, torsion free acts and noetherian acts. We try to determine what properties of T make the associated S-act has any of these properties.