By extracting crystal violate dye (CV) from its aqueous solution, the photocatalytic decolorization performance of ZnO/MWCNT nanocomposite was evaluated. The nanocomposite was prepared by precipitation of ZnO and incorporates on the surface of Multi-Walled Carbon Nanotubes (MWCNT). ZnO nanoparticles were synthesized using the sol gel process with MWCNT acting as a template. They were then analyzed by XRD, SEM, and TEM, which revealed how the shape of the spherical nano ZnO interacts with the point of zero charge (pzc), which allows us to see the physical attributes. In the dipping photoreactor, which included a slurry of dye solution and ZnO/MWCNT nanocomposite, the effectiveness of decolorization was assessed. The photodecolorization was studied for CV dye in aqueous solution at different conditions: The effect of time, weight of catalyst, concentration of dye, temperature, the initial pH of dye solution and addition of S2O82- to show the optimum condition of this process. The main results were the synthesis of incorporated ZnO on MWCNT surface with 10-20 nm with high photodecolorization against CV dye. Full decolorization reached at 90 min and 89.8% decolorization at the half time of reaction. ZnO/MWCNT weight of 0.06 gm per 100 mL was optimum for photodecolorization. The photocatalytic reaction was more efficient in the deceasing of CV concentration and obeys the Langmuir-Hinshelwood kinetic, while the photodecolorization was not less than 95% in pH range 6-10.Also, the photocatalytic reaction was effected in the presence of S2O82-, where the photodecolorization was more efficient.
In this research, design of advanced material for sunlight conversion requires focused research to obtain efficient photocatalytic system. Nanostructured ZnO was synthesized using spin coating technique. The structural, morphological and optical properties of annealed nanostructured ZnO thin film at 390 Co for 3 hours were characterized by x-ray diffraction, atomic force microscope AFM and UV-VIS spectrophotometer. Nanostructured ZnO was applied for removal Methylene Blue (MB) dye from water using sunlight induced photocatalytic process. Overall degradation of MB/ZnO was achieved after 120 minutes of sunlight irradiation while it needs more time for MB alone. The reaction rate constant fit pseudo first order for MB/ZnO degradation was 0.
... Show MoreIn this study, iron was coupled with copper to form a bimetallic compound through a biosynthetic method, which was then used as a catalyst in the Fenton-like processes for removing direct Blue 15 dye (DB15) from aqueous solution. Characterization techniques were applied on the resultant nanoparticles such as SEM, BET, EDAX, FT-IR, XRD, and zeta potential. Specifically, the rounded and shaped as spherical nanoparticles were found for green synthesized iron/copper nanoparticles (G-Fe/Cu NPs) with the size ranging from 32-59 nm, and the surface area was 4.452 m2/g. The effect of different experimental factors was studied in both batch and continuous experiments. These factors were H2O2 concentration, G-Fe/CuNPs amount, pH, initial DB15
... Show MoreA polypyrrole-based ammonia-detection gas sensor was studied in this work. Under a 1.6 V electrodeposition potential, polypyrrole (PPy) was electrochemically synthesized from an aqueous solution of 0.1 M pyrrole and 0.1 M oxalic acid. An extension to the polypyrrole films was applied through electrochemical deposition on indium tin oxide (ITO), using the metal oxide nanoparticles of MgO and WO3. These films were investigated for their sensing behavior towards NH3 at different working temperatures and different weight percentages of nanoparticles .The measurements of A.C conductivity were conducted over a frequency range of 101-105 Hz and temperature range of 298-423 K .
... Show MoreThe simulation of passively Q-switching is four non – linear first order differential equations. The optimization of passively Q-switching simulation was carried out using the constrained Rosenbrock technique. The maximization option in this technique was utilized to the fourth equation as an objective function; the parameters, γa, γc and β as were dealt with as decision variables. A FORTRAN program was written to determine the optimum values of the decision variables through the simulation of the four coupled equations, for ruby laser Q–switched by Dy +2: CaF2.For different Dy +2:CaF2 molecules number, the values of decision variables was predicted using our written program. The relaxation time of Dy +2: CaF2, used with ruby was
... Show MoreThe current work was undertaken to obtain the crude extract of PPO and laccase enzyme from the leaves of Malva parviflora. All leaves were washed with tap water, then the extraction was performed to acquire the crude extract’s enzymes. One gram of Malva parviflora leaves was homogenized in various volumes of distilled water (1:10, 1:5, and 1:2 w: v). The results showed that polyphenol oxidase and laccase with a ratio of 1:10 (w:v) gave the highest specific activity of 112.3 with 0.394 U/mg proteins. In addition, Malva parviflora leaves were homogenized with several types of buffers with two concentration (0.2 and 0.1 M) for PPO and laccase extraction. These buffers were potassium
... Show MoreDifferent percents(1.0,2.5,5.0 and 10)wt%of MgO powders were added to ZnO powder to study their effects on the physical properties of ZnO.Density, porpsity and water absorption of ZnO were decreased as MgO weigth percentage content increased. The values of vickers hardneess have double values especially at 1.0 wt % of MgO.
Sorption is a key factor in removal of organic and inorganic contaminants from their aqueous solutions. In this study, we investigated the removal of Xylenol Orange tetrasodium salt (XOTS) from its aqueous solution by Bauxite (BXT) and cationic surfactant hexadecyltrimethyl ammonium bromide modified Bauxite (BXT-HDTMA) in batch experiments. The BXT and BXT-HDTMA were characterized using FTIR, and SEM techniques. Adsorption studies were performed at various parameters i.e. temperature, contact time, adsorbent weight, and pH. The modified BXT showed better maximum removal efficiency (98.6% at pH = 9.03) compared to natural Bauxite (75% at pH 2.27), suggesting that BXT-HDTMA is an excellent adsorbent for the removal of XOTS from water. The equ
... Show More