Blockchain technologies have grown in popularity over the last few years, with various experts touting the technology's potential applications in a range of businesses, markets, organizations, and governmental institutions. In the brief history of blockchain, an astounding number of incredible implementations have been done in terms of how it may be utilized and the potential effect it may have on a range of sectors. And, because of the great number and complexity of these characteristics, addressing the blockchain's potential and complications can be difficult, especially when seeking to address its purpose and fit for a certain activity. The blockchain's practical skills in fixing multiple challenges that are currently preventing further progress in various industrial fields are significant benefits. Securing and sharing transactional data, automating and optimizing supply chain procedures, and enhancing transparency throughout the value chain are just a few of the issues that companies are concerned about. Blockchain technology efficiently overcomes these challenges by leveraging distributed, shared, secure, and permission-based transactional ledgers. This paper concentrates on the many industrial application domains that blockchain technology offers. In addition, it examines and investigates the benefits, drawbacks, and challenges of incorporating blockchain into various industry applications, as well as defines the criteria for using blockchain in multiple industry applications and provides a brief overview of the technology.
The existing investigation explains the consequence of irradiation of violet laser on the structure properties of MawsoniteCu6Fe2SnS8 [CFTS] thin films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser. when the received films were processed by continuous red laser (700 nm) with power (>1000mW) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time (0,30,45,60,75,90 min) respectively at room temperature.. The XRD diffraction gave polycrysta
... Show MoreIn this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More