In this work, an organic semiconductor of copper (II) phthalocyanine (CuPc) and Tris(8-hydroxyquinoline) aluminum (III) (Alq3) were entirely dissolved in chloroform with various mixing ratios (1:0,0.75:0.25,0.5:0.5,0.25:0.75,0:1) (w/w) to make thin films. They were deposited on a pre-cleaned glass using a spin-coating process and heat-treated at 473 K in vacuum. X-ray diffraction and a scanning electron microscope were used to investigate the films. XRD analysis reveals that CuPc/Alq3 composites have a polymorphic structure, with the exception of Alq3's amorphous structure, the crystallinity increases after annealing, but decreases when the concentration of Alq3 is increased. The quantity of (CuPc) rod-like structure and (Alq3) grain-like islands structure depends on the percentage of the combination. The compositional parameters of as-deposited and annealed thin films were explained using EDX data, which revealed that the sample was close to the nominal composition.
Copper tin sulfide (Cu2SnS3) thin films have been grown on glass
substrate with different thicknesses (500, 750 and 1000) nm by flash
thermal evaporation method after prepare its alloy from their
elements with high purity. The as-deposited films were annealed at
473 K for 1h. Compositional analysis was done using Energy
dispersive spectroscopy (EDS). The microstructure of CTS powder
examined by SEM and found that the large crystal grains are shown
clearly in images. XRD investigation revealed that the alloy was
polycrystalline nature and has cubic structure with preferred
orientation along (111) plane, while as deposited films of different
thickness have amorphous structure and converted to polycrystalline
CdS and CdS:Sn thin films were successfully deposited on glass
substrates by spray pyrolysis method. The films were grown at
substrate temperatures 300 C°. The effects of Sn concentration on the
structural and optical properties were studied.
The XRD profiles showed that the films are polycrystalline with
hexagonal structure grown preferentially along the (002) axis. The
optical studies exhibit direct allowed transition. Energy band gap
vary from 3.2 to 2.7 eV.
Cadmium sulfide (CdS) thin films with n-type semiconductor characteristics were prepared by flash evaporating method on glass substrates. Some films were annealed at 250 oC for 1hr in air. The thicknesses of the films was estimated to be 0.5µ by the spectrometer measurement. Structural, morphological, electrical, optical and photoconductivity properties of CdS films have been investigated by X-ray diffraction, AFM, the Hall effect, optical transmittance spectra and photoconductivity analysis, respectively. X-ray diffraction (XRD) pattern shows that CdS films are in the stable hexagonal crystalline structure. Using Debye Scherrerś formula, the average grain size for the samples was found to be 26 nm. The transmittance of the
... Show MoreThin films of pure tin mono-sulfide SnS with thicknesses of (0.85) μm were prepared by chemical spray pyrolysis technique and annealed for two hours with 673K.The effect of annealing on structural and optical properties for films prepared was studied. X-Ray diffraction analysis showed the polycrystalline with orthorhombic structure. It was found that annealing process increased the intensity of diffraction peaks. Optical properties of all samples were studied by recording the absorption and transmission  
... Show MoreIn this research, the structural and optical measurements were made on the Zinc oxide (ZnO) films prepared by two methods once by using chemical spray pyrolysis technique, and another by using thermal evaporation technique before and after irradiation by Gamma –Ray (γ – rays) from source type (Cs 137) with an energy (0.611)MeV as a function of gamma dose (0.15,0.3 and 0.45) Gy. The thickness of all films prepared by two method was about (300 ± 50) nm. XRD is used to characterize the structural properties, the results demonstrated that all samples prepared by two method before and after irradiation have polycrystalline structure with a preferred orientation (002).Also it showed that the structural properties are weakly
... Show MoreIn this research a study of some electrical properties Of (Te) thin films with(S) impurities of(1.2%) were deposited at( Ө=700)by thermal evaporation technique .The thicknesses of deposited films were (1050 , 1225 , 1400 , 1575 nm) on a glass substrates of different dimensions . From X-ray diffraction spectrum, the films are polycrystalline .A study of (I-V) characteristic for thin films, the measurements of electrical conductivity (σ)and electrical resistance(R )vs. temperature( T) are done. Further a measurement of thermoelectric power, see beck coefficient and activation energies ( Ea, Es) were computed
The effect of thermal annealing on some structural and optical properties of ZnSe thin films was studied which prepared by thermal evaporation method with (550±20) nm thickness and annealing at (373,473)K for (2h), By using X-ray diffraction technique structural properties studied and showed that the films are crystalline nature and have ( cubic structure ) .From the observed results after heating treatment, We found that the annealing to perform decreases in grain size and increases in dislocation and observed the optical properties increase in absorption and decrease in transmission. From absorption spectra optical energy gap calculated about (2.66,2.68)eV which decreases value after heating treatment
Spray pyrolysis technique was used to make Carbon60-Zinc oxide (C60-ZnO) thin films, and chemical, structural, antibacterial, and optical characterizations regarding such nanocomposite have been done prior to and following treatment. Fullerene peaks in C60-ZnO thin films are identical and appear at the same angles. Following the treatment of the plasma, the existence regarding fullerene peaks in the thin films investigated suggests that the crystallographic quality related to C60-ZnO thin films has enhanced. Following plasma treatment, field emission scanning electron microscopy (FESEM) images regarding a C60-ZnO thin film indicate that both zinc oxide and fullerene particles had shrunk in the size and have an even distribution. In addition
... Show MoreA thermal evaporation technique was used to prepare ZnO thin films. The samples were prepared with good quality onto a glass substrate and using Zn metal. The thickness varied from (100 to 300) ±10 nm. The structure and optical properties of the ZnO thin films were studied. The results of XRD spectra confirm that the thin films grown by this technique have hexagonal wurtzite, and also aproved that ZnO films have a polycrystalline structure. UV-Vis measurement, optical transmittance spectra, showed high transmission about 90% within visible and infrared range. The energy gap is found to be between 3.26 and 3.14e.V for 100 to 300 nm thickness respectivly. Atomic Force Microscope AFM (topographic image ) shows the grain size incre
... Show More