This experiment may be applied before with certain and special roles, but never applied under partition theory (Abacus James Diagram) conditions. Therefore, we would have to find an appropriate design for each character to enable us sending a word represented as increasing number with meaning only for beneficiaries.
In this work, a numerical study is performed to predict the solution of two – dimensional, steady and laminar mixed convection flow over a square cylinder placed symmetrically in a vertical parallel plate. A finite difference method is employed to solve the governing differential equations, continuity, momentum, and energy equation balances. The solution is obtained for stream function, vorticity and temperature as dependent variables by iterative technique known as successive over relaxation. The flow and temperature patterns are obtained for Reynolds number and Grashof number at (Re= -50,50,100,-100) (positive or negative value refers to aidding or opposing buoyancy , +1 assisting flow, -1 opposing flow) and (102 to 105) , respective
... Show MoreIn this paper, the fuzzy logic and the trapezoidal fuzzy intuitionistic number were presented, as well as some properties of the trapezoidal fuzzy intuitionistic number and semi- parametric logistic regression model when using the trapezoidal fuzzy intuitionistic number. The output variable represents the dependent variable sometimes cannot be determined in only two cases (response, non-response)or (success, failure) and more than two responses, especially in medical studies; therefore so, use a semi parametric logistic regression model with the output variable (dependent variable) representing a trapezoidal fuzzy intuitionistic number.
the model was estimated on simulati
... Show MoreThis paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.
One of the most important methodologies in operations research (OR) is the linear programming problem (LPP). Many real-world problems can be turned into linear programming models (LPM), making this model an essential tool for today's financial, hotel, and industrial applications, among others. Fuzzy linear programming (FLP) issues are important in fuzzy modeling because they can express uncertainty in the real world. There are several ways to tackle fuzzy linear programming problems now available. An efficient method for FLP has been proposed in this research to find the best answer. This method is simple in structure and is based on crisp linear programming. To solve the fuzzy linear programming problem (FLPP), a new ranking function (R
... Show MoreThe Fuzzy Logic method was implemented to detect and recognize English numbers in this paper. The extracted features within this method make the detection easy and accurate. These features depend on the crossing point of two vertical lines with one horizontal line to be used from the Fuzzy logic method, as shown by the Matlab code in this study. The font types are Times New Roman, Arial, Calabria, Arabic, and Andalus with different font sizes of 10, 16, 22, 28, 36, 42, 50 and 72. These numbers are isolated automatically with the designed algorithm, for which the code is also presented. The number’s image is tested with the Fuzzy algorithm depending on six-block properties only. Groups of regions (High, Medium, and Lo
... Show MoreIn this paper, the deterministic and the stochastic models are proposed to study the interaction of the Coronavirus (COVID-19) with host cells inside the human body. In the deterministic model, the value of the basic reproduction number determines the persistence or extinction of the COVID-19. If , one infected cell will transmit the virus to less than one cell, as a result, the person carrying the Coronavirus will get rid of the disease .If the infected cell will be able to infect all cells that contain ACE receptors. The stochastic model proves that if are sufficiently large then maybe give us ultimate disease extinction although , and this facts also proved by computer simulation.
In many areas, such as simulation, numerical analysis, computer programming, decision-making, entertainment, and coding, a random number input is required. The pseudo-random number uses its seed value. In this paper, a hybrid method for pseudo number generation is proposed using Linear Feedback Shift Registers (LFSR) and Linear Congruential Generator (LCG). The hybrid method for generating keys is proposed by merging technologies. In each method, a new large in key-space group of numbers were generated separately. Also, a higher level of secrecy is gained such that the internal numbers generated from LFSR are combined with LCG (The adoption of roots in non-linear iteration loops). LCG and LFSR are linear structures and outputs
... Show MoreMany problems are facing the installation of piles group in laboratory testing and the errors in results of load and settlement are measured experimentally may be happened due to select inadequate method of installation of piles group. There are three main methods of installation in-flight, pre-jacking and hammering methods. In order to find the correction factor between these methods the laboratory model tests were conducted on small-scale models. The parameters studied were the methods of installation (in-flight, pre-jacking and hammering method), the number of piles and in sandy soil in loose state. The results of experimental work show that the increase in the number of piles value led to increase in load carrying ca
... Show MoreIn this paper, a compartmental differential epidemic model of COVID-19 pandemic transmission is constructed and analyzed that accounts for the effects of media coverage. The model can be categorized into eight distinct divisions: susceptible individuals, exposed individuals, quarantine class, infected individuals, isolated class, infectious material in the environment, media coverage, and recovered individuals. The qualitative analysis of the model indicates that the disease-free equilibrium point is asymptotically stable when the basic reproduction number R0 is less than one. Conversely, the endemic equilibrium is globally asymptotically stable when R0 is bigger than one. In addition, a sensitivity analysis is conducted to determine which
... Show MoreIn the presence of multi-collinearity problem, the parameter estimation method based on the ordinary least squares procedure is unsatisfactory. In 1970, Hoerl and Kennard insert analternative method labeled as estimator of ridge regression.
In such estimator, ridge parameter plays an important role in estimation. Various methods were proposed by many statisticians to select the biasing constant (ridge parameter). Another popular method that is used to deal with the multi-collinearity problem is the principal component method. In this paper,we employ the simulation technique to compare the performance of principal component estimator with some types of ordinary ridge regression estimators based on the value of t
... Show More