The Matching and Mosaic of the satellite imagery play an essential role in many remote sensing and image processing projects. These techniques must be required in a particular step in the project, such as remotely change detection applications and the study of large regions of interest. The matching and mosaic methods depend on many image parameters such as pixel values in the two or more images, projection system associated with the header files, and spatial resolutions, where many of these methods construct the matching and mosaic manually. In this research, georeference techniques were used to overcome the image matching task in semi automotive method. The decision about the quality of the technique can be considered if the error value is less than half a pixel. The projection-based method was used to ensure the mosaic process. The test images are satellite imagery with medium spatial resolutions; these images were processed to ensure the results. In matching techniques, the different sensor images (different in resolutions) were investigated using image resize and sampling. The results were obtained using many remote sensing packages and written programs in Matlab environmental.
Global warming is the scientific evidence that air temperatures the near surface of Earth are rising, and that higher temperatures threaten dangerous consequences earth such as drought, disease, floods, lost ecosystems. This aim of this research is analyzed the monthly means of daily values of air temperature in Iraq for the period of 1979 to 2010 by using GIS techniques. Data were obtained from the European Center for Medium-range Weather Forecasts (ECMWF). The initial diagnosis showed that there is no significant increase of maximum values of the mean temperature for the four parts( northern, central, western, and southern ) of Iraq for the four seasons so we compared the area of maximum value of mean temperature which covered it and t
... Show MoreIn this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show MoreThe research aims to identify the future teachers' attitudes toward cloud computing in the Kingdom of Saudi Arabia from their point of view. The research adopted the descriptive approach, and a questionnaire was applied to a random sample of (370) male and female teachers in governmental and private general education schools in the Al-Jouf region, Saudi Arabia. The results of the research concluded that the reality of future teachers' attitudes towards cloud computing in the Kingdom of Saudi Arabia from their point of view is very high and that most areas of using computing are in the field of assessment, then teaching, and activities. The challenges of future teachers' attitudes toward cloud computing are recorded at a high level, parti
... Show MoreBackground: The isthmus is a difficult area in the root canal complex to manage. The research aimed to evaluate the efficiency of three different obturation techniques (lateral condensation, EandQ (thermoplasticized gutta percha system) and Soft Core (thermoplasticized core carrier gutta percha system)) to obturate the isthmus area of roots prepared by two different instrumentation techniques (rotary ProTaper universal and ProTaper Next systems). Material and method: Sixty freshly extracted teeth were randomly divided into two main groups (A and B) of 30 teeth each. Group A was prepared by rotary ProTaper Universal whereas group B was prepared by ProTaper Next system. Each main group was then randomly subdivided into three subgroups of 10 t
... Show MoreContours extraction from two dimensional echocardiographic images has been a challenge in digital image processing. This is essentially due to the heavy noise, poor quality of these images and some artifacts like papillary muscles, intra-cavity structures as chordate, and valves that can interfere with the endocardial border tracking. In this paper, we will present a technique to extract the contours of heart boundaries from a sequence of echocardiographic images, where it started with pre-processing to reduce noise and produce better image quality. By pre-processing the images, the unclear edges are avoided, and we can get an accurate detection of both heart boundary and movement of heart valves.
In this paper, a simple fast lossless image compression method is introduced for compressing medical images, it is based on integrates multiresolution coding along with polynomial approximation of linear based to decompose image signal followed by efficient coding. The test results indicate that the suggested method can lead to promising performance due to flexibility in overcoming the limitations or restrictions of the model order length and extra overhead information required compared to traditional predictive coding techniques.
The autocorrelation function calculations have been carried out on photon-limited computer-simulated images of binary stars that recorded through kolmogorov atmospheric turbulence. The effect of the parameters of photon limited binary star on the variation of signal to noise, signal to background ratios, number of images that processed and the magnitude of binary stars are studied and mathematic equations are given to investigate this effect. The result indicates that signal to background ratio of photon limited images of a binary star is independent of the total number of recorded photons.
Texture synthesis using genetic algorithms is one way; proposed in the previous research, to synthesis texture in a fast and easy way. In genetic texture synthesis algorithms ,the chromosome consist of random blocks selected manually by the user .However ,this method of selection is highly dependent on the experience of user .Hence, wrong selection of blocks will greatly affect the synthesized texture result. In this paper a new method is suggested for selecting the blocks automatically without the participation of user .The results show that this method of selection eliminates some blending caused from the previous manual method of selection.
Printed Arabic document image retrieval is a very important and needed system for many companies, governments and various users. In this paper, a printed Arabic document images retrieval system based on spotting the header words of official Arabic documents is proposed. The proposed system uses an efficient segmentation, preprocessing methods and an accurate proposed feature extraction method in order to prepare the document for classification process. Besides that, Support Vector Machine (SVM) is used for classification. The experiments show the system achieved best results of accuracy that is 96.8% by using polynomial kernel of SVM classifier.
Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin
... Show More