Preferred Language
Articles
/
ijs-6660
An Improved Outlier Detection Model for Detecting Intrinsic Plagiarism

     In the task of detecting intrinsic plagiarism, the cases where reference corpus is absent are to be dealt with. This task is entirely based on inconsistencies within a given document. Detection of internal plagiarism has been considered as a classification problem. It can be estimated through taking into consideration self-based information from a given document.

The core contribution of the work proposed in this paper is associated with the document representation. Wherein, the document, also, the disjoint segments generated from it, have been represented as weight vectors demonstrating their main content. Where, for each element in these vectors, its average weight has been considered instead of its frequency.

The proposed work has been evaluated in terms of Precision, Recall, F-measure, Granularity, and Plagdet. It is shown that the attained results are comparable to the ones attained by the best state-of-the-art methods. Where, through applying the proposed method to PAN-PC-09 and PAN-PC-11 for the detection of intrinsic plagiarism, a Recall scores of 0.4503 and 0.4303 have been recorded, even though further improvement for Precision (0.3308 and 0.2806) and Granularity (1.1765 and 1.1111) needs to be made. Concerning f-measure, the proposed approach has recorded 0.3814 and 0.3397. In terms of the total performance of a plagiarism detection approach, Plagdet, the proposed method has recorded 0.3399 and 0.3151.

Scopus Crossref
View Publication
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural

... Show More
Scopus (10)
Crossref (4)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Iraqi Journal Of Science
An Improved Method to Recognize the Iraqi License Plates Using Local Projections

The License Plate (LP), is a rectangular metal plate that contains numbers and letters. This plate is fixed onto the vehicle's body. It is used as a mean to identify the vehicle. The License Plate Recognition (LPR) system is a mean where a vehicle can be identified automatically using a computer system. The LPR has many applications, such as security applications for car tracking, or enforcing control on vehicles entering restricted areas (such as airports or governmental buildings). This paper is concerned with introducing a new method to recognize the Iraqi LPs using local vertical and horizontal projections, then testing its performance. The attained success rate reached 99.16%, with average recognition time around 0.012 second for re

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
The Impact of Plagiarism on the Quality of Scientific Researches “Empirical Study”

The purpose of this research is to study the quality of scientific research at the University of Baghdad in light of scientific piracy and plagiarism of research and results and attribute it to others intentionally or unintentionally. Proactive writing such as stealing ideas or synthesizing the results of one another over others and its negative impact on the quality of scientific outputs and the reputation of educational organizations through an exploratory study in the faculties of the University of Baghdad, scientific and humanitarian. As for the aims of the study, it was determined by determining the negative impact of piracy on scientific research. A Likert five-point scale was used in this research. The research community c

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu May 28 2020
Journal Name
Applied Sciences
THz-TDS for Detecting Glycol Contamination in Engine Oil

There continues to be a need for an in-situ sensor system to monitor the engine oil of internal combustion engines. Engine oil needs to be monitored for contaminants and depletion of additives. While various sensor systems have been designed and evaluated, there is still a need to develop and evaluate new sensing technologies. This study evaluated Terahertz time-domain spectroscopy (THz-TDS) for the identification and estimation of the glycol contamination of automotive engine oil. Glycol contamination is a result of a gasket or seal leak allowing coolant to enter an engine and mix with the engine oil. An engine oil intended for use in both diesel and gasoline engines was obtained. Fresh engine oil samples were contaminated with fou

... Show More
Scopus (10)
Crossref (12)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Dec 02 2021
Journal Name
Iraqi Journal Of Science
An Approach Based on Decision Tree and Self-Organizing Map For Intrusion Detection

In modern years, internet and computers were used by many nations all overhead the world in different domains. So the number of Intruders is growing day-by-day posing a critical problem in recognizing among normal and abnormal manner of users in the network. Researchers have discussed the security concerns from different perspectives. Network Intrusion detection system which essentially analyzes, predicts the network traffic and the actions of users, then these behaviors will be examined either anomaly or normal manner. This paper suggested Deep analyzing system of NIDS to construct network intrusion detection system and detecting the type of intrusions in traditional network. The performance of the proposed system was evaluated by using

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 24 2024
Journal Name
Journal Of Plant Protection Research
Developing smart sprayer for weed control using an object detection algorithm (yolov5)

Spraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to...

View Publication
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
A Reliable Iterative Transform Method for Solving an Epidemic Model

    The main purpose of the work is to apply a new method, so-called LTAM, which couples the Tamimi and Ansari iterative method (TAM) with the Laplace transform (LT). This method involves solving a problem of non-fatal disease spread in a society that is assumed to have a fixed size during the epidemic period. We apply the method to give an approximate analytic solution to the nonlinear system of the intended model. Moreover, the absolute error resulting from the numerical solutions and the ten iterations of LTAM approximations of the epidemic model, along with the maximum error remainder, were calculated by using MATHEMATICA® 11.3 program to illustrate the effectiveness of the method.

Scopus (7)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Dec 31 2021
Journal Name
Iraqi Geological Journal
Construction of Comprehensive Geological Model for an Iraqi Oil Reservoir

The paper generates a geological model of a giant Middle East oil reservoir, the model constructed based on the field data of 161 wells. The main aim of the paper was to recognize the value of the reservoir to investigate the feasibility of working on the reservoir modeling prior to the final decision of the investment for further development of this oilfield. Well log, deviation survey, 2D/3D interpreted seismic structural maps, facies, and core test were utilized to construct the developed geological model based on comprehensive interpretation and correlation processes using the PETREL platform. The geological model mainly aims to estimate stock-tank oil initially in place of the reservoir. In addition, three scenarios were applie

... Show More
Scopus (5)
Crossref (1)
Scopus Crossref
Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Scopus (2)
Scopus
View Publication Preview PDF