Preferred Language
Articles
/
ijs-6659
A Developed Compression Scheme to Optimize Data Transmission in Wireless Sensor Networks

       Improving performance is an important issue in Wireless Sensor Networks (WSN). WSN has many limitations including network performance. The research question is how to reduce the amount of data transmitted to improve network performance?                                                                                                                  

    The work will include one of the dictionary compression methods which is Lempel Ziv Welch(LZW). One problem with the dictionary method is that the token size is fixed. The LZW dictionary method is not very useful with little data, because it loses many bytes when storing small-sized tokens.

     From the results obtained, the best compression ratios were in the proposed algorithm. The proposed work suggests using a dynamic size token where the tokens are classified according to their size(one byte, two bytes, or three bytes). The main idea of the proposed work is based on increasing the frequency of data to increase the compression ratio. To increase the frequency of data, the work suggests keeping the amount of incremental reading data instead of keeping the whole real data. Because the climate reading data changes very slowly, the amount of change would be frequent.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 08 2023
Journal Name
Iraqi Journal Of Science
A Genetic Algorithm for Minimum Set Covering Problem in Reliable and Efficient Wireless Sensor Networks

Densely deployment of sensors is generally employed in wireless sensor networks (WSNs) to ensure energy-efficient covering of a target area. Many sensors scheduling techniques have been recently proposed for designing such energy-efficient WSNs. Sensors scheduling has been modeled, in the literature, as a generalization of minimum set covering problem (MSCP) problem. MSCP is a well-known NP-hard optimization problem used to model a large range of problems arising from scheduling, manufacturing, service planning, information retrieval, etc. In this paper, the MSCP is modeled to design an energy-efficient wireless sensor networks (WSNs) that can reliably cover a target area. Unlike other attempts in the literature, which consider only a si

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 12 2014
Journal Name
Wireless Personal Communications
Scopus (19)
Crossref (14)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks

Wireless Multimedia Sensor Networks (WMSNs) are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to   produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC). The Modify Spike Neural Network controller (MSNC) can calculate the appropriate traffi

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Enhanced Chain-Cluster Based Mixed Routing Algorithm for Wireless Sensor Networks

Energy efficiency is a significant aspect in designing robust routing protocols for wireless sensor networks (WSNs). A reliable routing protocol has to be energy efficient and adaptive to the network size. To achieve high energy conservation and data aggregation, there are two major techniques, clusters and chains. In clustering technique, sensor networks are often divided into non-overlapping subsets called clusters. In chain technique, sensor nodes will be connected with the closest two neighbors, starting with the farthest node from the base station till the closest node to the base station. Each technique has its own advantages and disadvantages which motivate some researchers to come up with a hybrid routing algorit

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Multi-Objective Set Cover Problem for Reliable and Efficient Wireless Sensor Networks

Achieving energy-efficient Wireless Sensor Network (WSN) that monitors all targets at
all times is an essential challenge facing many large-scale surveillance applications.Singleobjective
set cover problem (SCP) is a well-known NP-hard optimization problem used to
set a minimum set of active sensors that efficiently cover all the targeted area. Realizing
that designing energy-efficient WSN and providing reliable coverage are in conflict with
each other, a multi-objective optimization tool is a strong choice for providing a set of
approximate Pareto optimal solutions (i.e., Pareto Front) that come up with tradeoff
between these two objectives. Thus, in the context of WSNs design problem, our main
contribution is to

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Swarm And Evolutionary Computation
Scopus (163)
Crossref (136)
Scopus Clarivate Crossref
Publication Date
Mon Jan 28 2019
Journal Name
Soft Computing
Scopus (10)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sat Aug 25 2012
Journal Name
Wireless Personal Communications
Scopus (56)
Crossref (42)
Scopus Clarivate Crossref
Publication Date
Sun Aug 24 2014
Journal Name
Wireless Personal Communications
Scopus (22)
Crossref (14)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
An Improved Cuckoo Search Algorithm for Maximizing the Coverage Range of Wireless Sensor Networks

The issue of increasing the range covered by a wireless sensor network with restricted sensors is addressed utilizing improved CS employing the PSO algorithm and opposition-based learning (ICS-PSO-OBL). At first, the iteration is carried out by updating the old solution dimension by dimension to achieve independent updating across the dimensions in the high-dimensional optimization problem. The PSO operator is then incorporated to lessen the preference random walk stage's imbalance between exploration and exploitation ability. Exceptional individuals are selected from the population using OBL to boost the chance of finding the optimal solution based on the fitness value. The ICS-PSO-OBL is used to maximize coverage in WSN by converting r

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF