In this work, the mathematical modelling of peristaltic transport for incompressible Sutterby fluid through the cavity between coaxial tubes where the inner tube is fixed and the outer tube has sinusoidal rhythmic fluctuations along the channel’s walls is presented. Under the assumption of long wavelength and the low Reynolds number, the governing equations (motion, temperature, and concentration) are illustrated in cylindrical coordinates. The analytical solution for the temperature and concentration of the fluid flow is obtained using Mathematica 11.3, whereas the perturbation technique is employed to find the closed form of the velocity profile. The variation of the axial velocity, stream function, temperature, concentration, and heat transfer are graphically discussed under the impact of interesting involved parameters.
This paper deals with an analytical study of the flow of an incompressible generalized Burgers’ fluid (GBF) in an annular pipe. We discussed in this problem the flow induced by an impulsive pressure gradient and compare the results with flow due to a constant pressure gradient. Analytic solutions for velocity is earned by using discrete Laplace transform (DLT) of the sequential fractional derivatives (FD) and finite Hankel transform (FHT). The influences of different parameters are analyzed on a velocity distribution characteristics and a comparison between two cases is also presented, and discussed in details. Eventually, the figures are plotted to exhibit these effects.
In this paper, we discuss a fluid problem that has wide applications in biomechanics, polymer industries, and biofluids. We are concerned here with studying the combined effects of porous medium and heat transfer on MHD non-Newtonian Jeffery fluid which flows through a two dimensional asymmetric, inclined tapered channel. Base equations, represented by mass conservation, motion, energy and concentration conservation, were formulated first in a fixed frame and then transformed into a moving frame. By holding the assumptions of “long wavelength and low Reynolds number†these physical equations were simplified into differential equations. Approximate solutions for the velocity profile, stream function, and temperature profile we
... Show MoreIn this paper fractional Maxwell fluid equation has been solved. The solution is in the Mettag-Leffler form. For the corresponding solutions for ordinary Maxwell fluid are obtained as limiting case of general solutions. Finally, the effects of different parameters on the velocity and shear stress profile are analyzed through plotting the velocity and shear stress profile.
In this study, aromatic polyamide reverse osmosis membranes were used to remove zinc ions from electroplating wastewater. Influence of different operating conditions such as time, zinc concentration and pressure on reverse osmosis process efficiency was studied. The experimental results showed, concentration of zinc in permeate increase with increases of time from 0 to 70 min, and flux of water through membrane decline with time. While, the concentrations of zinc in permeate increase with the increase in feed zinc concentration (10–300 mg/l), flux decrease with the increment of feed concentration. The raise of pressure from 1 to 4 bar, the zinc concentration decreases and the flux increase. The highest recovery percentage was fou
... Show MoreIn this study, aromatic polyamide reverse osmosis membranes were used to remove zinc ions from electroplating wastewater. Influence of different operating conditions such as time, zinc concentration and pressure on reverse osmosis process efficiency was studied. The experimental results showed, concentration of zinc in permeate increase with increases of time from 0 to 70 min, and flux of water through membrane decline with time. While, the concentrations of zinc in permeate increase with the increase in feed zinc concentration (10–300 mg/l), flux decrease with the increment of feed concentration. The raise of pressure from 1 to 4 bar, the zinc concentration decreases and the flux increase. The highest recovery percentage was found is 54.
... Show MoreThis paper is devoted to the study of the peristaltic transport of viscoelastic non-Newtonian fluids with fractional Maxwell model in an inclined channel. Approximate analytical solutions have been constructed using Adomain decomposition method under the assumption of long wave boundary layer type approximation and low Reynolds number. The effect of each of relaxation time, fractional parameters, Reynolds number, Froude number, inclination of channel and amplitude on the pressure difference, friction force and stream function along one wavelength are received and analyzed.
This paper is devoted to the study of the peristaltic transport of viscoelastic non-Newtonian fluids with fractional Maxwell model in an inclined channel. Approximate analytical solutions have been constructed using Adomain decomposition method under the assumption of long wave boundary layer type approximation and low Reynolds number. The effect of each of relaxation time, fractional parameters, Reynolds number, Froude number, inclination of channel and amplitude on the pressure difference, friction force and stream function along one wavelength are received and analyzed.
"This paper presents a study of inclined magnetic field on the unsteady rotating flow of a generalized Maxwell fluid with fractional derivative between two inclined infinite circular cylinders through a porous medium. The analytic solutions for velocity field and shear stress are derived by using the Laplace transform and finite Hankel transform in terms of the generalized G functions. The effect of the physical parameters of the problem on the velocity field is discussed and illustrated graphically.
The aim of this paper is the study of the influence of magnetic field on unsteady
flow of the second-grade fluid with constant viscosity. The equations which
controlled this type of fluid flow are complicated, so finding an analytical solution is
not easy, because it is a system of partial differential equations.We obtained an
expression for the velocity by using homotopy analysis method HAM.
It is found that the equations motion are controlled by many dimensionless
parameter, namely magnetic field parameter M and material constant α,
dimensionless film thickness β and unsteadiness parameter S.We have been studied
the influence of all the physical parameters, that mentioned above on the velocity
field, also a