Petrophysical properties including volume of shale, porosity and water saturation are significance parameters for petroleum companies in evaluating the reservoirs and determining the hydrocarbon zones. These can be achieved through conventional petrophysical calculations from the well logs data such as gamma ray, sonic, neutron, density and deep resistivity. The well logging operations of the targeted limestone Mishrif reservoirs in Ns-X Well, Nasiriya Oilfield, south of Iraq could not be done due to some problems related to the well condition. The gamma ray log was the only recorded log through the cased borehole. Therefore, evaluating the reservoirs and estimating the perforation zones has not performed and the drilled well was abandoned. This paper presents a solution to estimate the missing open-hole logs of Mishrif Formation including sonic, neutron, density and deep resistivity using supervised Artificial Neural Network (ANN) in Petrel software (2016.2). Furthermore, the original gamma-ray log along with the predicted logs data from ANN models were processed, and the petrophysical properties including volume of shale, effective porosity and water saturation were calculated to determine the hydrocarbon zones. The ANN Mishrif Formation models recorded coefficient of determination (R2) of 0.65, 0.77, 0.82, and 0.04 between the predicted and the tested logs data with total correlations of 0.67, 0.91, 0.84 and 0.57 for sonic, neutron, density, and resistivity logs respectively. The best possible hydrocarbon-bearing zone ranges from the depth of about 1980-2030 m in the mB1unit. The ANN provides a good accuracy and data matching in clean and non-heterogeneous formations compared to those with higher heterogeneity that contain more than one type of lithology. The Ns-X Well can, therefore, be linked to the development plans of the Nasiriya Field instead of neglect it.
Social protection meets different aspects of the needs of vulnerable groups, such as the economic, health, education, and family relations and ties in the Iraqi society. This is because vulnerable groups have suffered from social and economic influences that have negative implications on the social reality as a whole. Poverty is a case in point, which paved the way to frequent setbacks that have led to social structure instability. Accordingly, the present study aims to examine the role and effect of the Net of Social Protection Program in equally distributing social protection to curb or mitigate any negative consequnces that might happen to the poor segments and vulnerable people, who are succeptible to shocks, such as: the orphans, un
... Show MoreThis paper considers the maximum number of weekly cases and deaths caused by the COVID-19 pandemic in Iraq from its outbreak in February 2020 until the first of July 2022. Some probability distributions were fitted to the data. Maximum likelihood estimates were obtained and the goodness of fit tests were performed. Results revealed that the maximum weekly cases were best fitted by the Dagum distribution, which was accepted by three goodness of fit tests. The generalized Pareto distribution best fitted the maximum weekly deaths, which was also accepted by the goodness of fit tests. The statistical analysis was carried out using the Easy-Fit software and Microsoft Excel 2019.
Recently, the Internet of Things has emerged as an encouraging technology that is scaling up new heights towards the modernization of real word physical objects into smarter devices in several domains. Internet of Things (IoT) based solutions in agriculture drives farming into a smart way through the proliferation of smart devices to enhanced production with minimal human involvement. This paper presents a comprehensive study of the role of IoT in prominent applications of farming, wireless communication protocols, and the role of sensors in precision farming. In this research article, the existing frameworks in IoT-based agriculture systems with relevant technologies are presented. Furthermore, the comparative analysis of the a
... Show MoreIn this research, the nonparametric technique has been presented to estimate the time-varying coefficients functions for the longitudinal balanced data that characterized by observations obtained through (n) from the independent subjects, each one of them is measured repeatedly by group of specific time points (m). Although the measurements are independent among the different subjects; they are mostly connected within each subject and the applied techniques is the Local Linear kernel LLPK technique. To avoid the problems of dimensionality, and thick computation, the two-steps method has been used to estimate the coefficients functions by using the two former technique. Since, the two-
... Show MoreFiber-to-the-Home (FTTH) has long been recognized as a technology that provides future proof bandwidth [1], but has generally been too expensive to implement on a wide scale. However, reductions in the cost of electro-optic components and improvements in the handling of fiber optics now make FTTH a cost effective solution in many situations. The transition to FTTH in the access network is also a benefit for both consumers and service providers because it opens up the near limitless capacity of the core long-haul network to the local user. In this paper individual passive optical components, transceivers, and fibers has been put together to form a complete FTTH network. Then the implementation of the under construction Baghdad/Al
... Show MoreOur goal from this work is to find the linear prediction of the sum of two Poisson process
) ( ) ( ) ( t Y t X t Z + = at the future time 0 ), ( ≥ + τ τ t Z and that is when we know the values of
) (t Z in the past time and the correlation function ) (τ βz
Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreAbstract:
Since the railway transport sector is very important in many countries of the world, we have tried through this research to study the production function of this sector and to indicate the level of productivity under which it operates.
It was found through the estimation and analysis of the production function Kub - Duglas that the railway transport sector in Iraq suffers from a decline in the level of productivity, which was reflected in the deterioration of the level of services provided for the transport of passengers and goods. This led to the loss of the sector of importance in supporting the national economy and the reluctance of most passengers an
... Show MoreRecently there has been an urgent need to identify the ages from their personal pictures and to be used in the field of security of personal and biometric, interaction between human and computer, security of information, law enforcement. However, in spite of advances in age estimation, it stills a difficult problem. This is because the face old age process is determined not only by radical factors, e.g. genetic factors, but also by external factors, e.g. lifestyle, expression, and environment. This paper utilized machine learning technique to intelligent age estimation from facial images using support vector machine (SVM) on FG_NET dataset. The proposed work consists of three phases: the first phase is image preprocessing include four st
... Show MoreImproving the performance of visual computing systems is achieved by removing unwanted reflections from a picture captured in front of a glass. Reflection and transmission layers are superimposed in a linear form at the reflected photographs. Decomposing an image into these layers is often a difficult task. Plentiful classical separation methods are available in the literature which either works on a single image or requires multiple images. The major step in reflection removal is the detection of reflection and background edges. Separation of the background and reflection layers is depended on edge categorization results. In this paper a wavelet transform is used as a prior estimation of background edges to sepa
... Show More