Petrophysical properties including volume of shale, porosity and water saturation are significance parameters for petroleum companies in evaluating the reservoirs and determining the hydrocarbon zones. These can be achieved through conventional petrophysical calculations from the well logs data such as gamma ray, sonic, neutron, density and deep resistivity. The well logging operations of the targeted limestone Mishrif reservoirs in Ns-X Well, Nasiriya Oilfield, south of Iraq could not be done due to some problems related to the well condition. The gamma ray log was the only recorded log through the cased borehole. Therefore, evaluating the reservoirs and estimating the perforation zones has not performed and the drilled well was abandoned. This paper presents a solution to estimate the missing open-hole logs of Mishrif Formation including sonic, neutron, density and deep resistivity using supervised Artificial Neural Network (ANN) in Petrel software (2016.2). Furthermore, the original gamma-ray log along with the predicted logs data from ANN models were processed, and the petrophysical properties including volume of shale, effective porosity and water saturation were calculated to determine the hydrocarbon zones. The ANN Mishrif Formation models recorded coefficient of determination (R2) of 0.65, 0.77, 0.82, and 0.04 between the predicted and the tested logs data with total correlations of 0.67, 0.91, 0.84 and 0.57 for sonic, neutron, density, and resistivity logs respectively. The best possible hydrocarbon-bearing zone ranges from the depth of about 1980-2030 m in the mB1unit. The ANN provides a good accuracy and data matching in clean and non-heterogeneous formations compared to those with higher heterogeneity that contain more than one type of lithology. The Ns-X Well can, therefore, be linked to the development plans of the Nasiriya Field instead of neglect it.
The unconventional techniques called “the quick look techniques”, have been developed to present well log data calculations, so that they may be scanned easily to identify the zones that warrant a more detailed analysis, these techniques have been generated by service companies at the well site which are among the useful, they provide the elements of information needed for making decisions quickly when time is of essence. The techniques used in this paper are:
- Apparent resistivity Rwa
- Rxo /Rt
The above two methods had been used to evaluate Nasiriyah oil field formations (well-NS-3) to discover the hydrocarbon bearing formations. A compu
... Show MoreThis work studies the role of serum apelin-36 and Glutathione S-transferases (GST) activity in association with the hormonal, metabolic profiles and their link to the risk of cardiovascular disease (CVD) in healthy and patients' ladies with polycystic ovary syndrome (PCOS). A total of fifty-four (PCOS) patients and thirty-one healthy woman as a control have been studied. The PCOS patients were subdivided on the basis of body-mass-index (BMI), into 2-subgroups (the first group was obese-PCOS with BMI ≥ 30 and the second group was non-obese PCOS MBI<30). Fasting-insulin-levels and Lipid-profile, Homeostatic-model assessment-of-insulin-resistance (HOMA-IR), follicle-stimulating-hormone (FSH), luteinizing-hormone (LH), testosterone and
... Show MoreSemiconductor laser is used in processing many issues related to the scientific, military, medical, industrial and agricultural fields due to its unique properties such as coherence and high strength where GaN-based components are the most efficient in this field. Current technological developments mention to the strong connection of GaN with sustainable electronic and optoelectronic devices which have high-efficiency. The threshold current density of Al0.1Ga0.9N/GaN triple quantum well laser structure was investigated to determine best values of the parameters affecting the threshold current density that are well width, average thickness of active region, cavity length, reflectivity of cavity mirrors and optical confinement factor. The opt
... Show MoreUrban land price is the primary indicator of land development in urban areas. Land prices in holly cities have rapidly increased due to tourism and religious activities. Public agencies are usually facing challenges in managing land prices in religious areas. Therefore, they require developed models or tools to understand land prices within religious cities. Predicting land prices can efficiently retain future management and develop urban lands within religious cities. This study proposed a new methodology to predict urban land prices within holy cities. The methodology is based on two models, Linear Regression (LR) and Support Vector Regression (SVR), and nine variables (land price, land area,
... Show MoreThe current study deals with microfacies and the depositional environment of the Lower Cretaceous Sarmord Formation at selected sections in Sulaimani and Erbil Governorates, northern Iraq. The Sarmord Formation alternates rhythmically between yellowish grey marly limestones and grey black marls. These lithologies are observed in all studied sections of Sarmord Formation in northern Iraq. Petrographic investigation of this study based on 240 thin sections demonstrated that the carbonate constituents are mainly composed of skeletal and non-skeletal grains. The skeletal grains include a variety of foraminiferas (planktonic and benthonic), bioclasts, calcispheres, ostracods, radiolaria, echinoderms, sponge spicules, ammonoids and be
... Show MoreIn this paper, the method of estimating the variation of Zenith Path Delay (ZPD) estimation method will be illustrate and evaluate using Real Time Kinematic Differential Global Positioning System (RTK-DGPS). The GPS provides a relative method to remotely sense atmospheric water vapor in any weather condition. The GPS signal delay in the atmosphere can be expressed as ZPD. In order to evaluate the results, four points had been chosen in the university of Baghdad campus to be rover ones, with a fixed Base point. For each rover position a 155 day of coordinates measurements was collected to overcome the results. Many models and mathematic calculations were used to extract the ZPD using the Matlab environment. The result shows that the ZPD valu
... Show MoreIn this paper, the method of estimating the variation of Zenith Path Delay (ZPD) estimation method will be illustrate and evaluate using Real Time Kinematic Differential Global Positioning System (RTK-DGPS). The GPS provides a relative method to remotely sense atmospheric water vapor in any weather condition. The GPS signal delay in the atmosphere can be expressed as ZPD. In order to evaluate the results, four points had been chosen in the university of Baghdad campus to be rover ones, with a fixed Base point. For each rover position a 155 day of coordinates measurements was collected to overcome the results. Many models and mathematic calculations were used to extract the ZPD using the Matlab environment. The result shows
... Show MoreSemi-parametric regression models have been studied in a variety of applications and scientific fields due to their high flexibility in dealing with data that has problems, as they are characterized by the ease of interpretation of the parameter part while retaining the flexibility of the non-parametric part. The response variable or explanatory variables can have outliers, and the OLS approach have the sensitivity to outliers. To address this issue, robust (resistance) methods were used, which are less sensitive in the presence of outlier values in the data. This study aims to estimate the partial regression model using the robust estimation method with the wavel
... Show MoreBig data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a
... Show More