Petrophysical properties including volume of shale, porosity and water saturation are significance parameters for petroleum companies in evaluating the reservoirs and determining the hydrocarbon zones. These can be achieved through conventional petrophysical calculations from the well logs data such as gamma ray, sonic, neutron, density and deep resistivity. The well logging operations of the targeted limestone Mishrif reservoirs in Ns-X Well, Nasiriya Oilfield, south of Iraq could not be done due to some problems related to the well condition. The gamma ray log was the only recorded log through the cased borehole. Therefore, evaluating the reservoirs and estimating the perforation zones has not performed and the drilled well was abandoned. This paper presents a solution to estimate the missing open-hole logs of Mishrif Formation including sonic, neutron, density and deep resistivity using supervised Artificial Neural Network (ANN) in Petrel software (2016.2). Furthermore, the original gamma-ray log along with the predicted logs data from ANN models were processed, and the petrophysical properties including volume of shale, effective porosity and water saturation were calculated to determine the hydrocarbon zones. The ANN Mishrif Formation models recorded coefficient of determination (R2) of 0.65, 0.77, 0.82, and 0.04 between the predicted and the tested logs data with total correlations of 0.67, 0.91, 0.84 and 0.57 for sonic, neutron, density, and resistivity logs respectively. The best possible hydrocarbon-bearing zone ranges from the depth of about 1980-2030 m in the mB1unit. The ANN provides a good accuracy and data matching in clean and non-heterogeneous formations compared to those with higher heterogeneity that contain more than one type of lithology. The Ns-X Well can, therefore, be linked to the development plans of the Nasiriya Field instead of neglect it.
Um-Al-Naaj region in Al-Hawiezah Marsh, Southern Iraq was chosen to study the environmental variations of some water characteristics during 2008, seasonally. The results showed clear seasonal changes in values of some environmental variables (temperature, depth, light penetration, turbidity, total suspended solids, pH, dissolved oxygen, reactive phosphate, reactive nitrite, and reactive nitrate), while there were no clear seasonal changes in electrical conductivity and salinity values. In addition, high nutrients concentrations and light penetration were noted. Statistical analysis showed significant positive relationship between air and water temperature; electrical conductivity and salinity. Water turbidity was significantly affecte
... Show MoreThe harvest of hydrocarbon from the depleted reservoir is crucial during field development. Therefore, drilling operations in the depleted reservoir faced several problems like partial and total lost circulation. Continuing production without an active water drive or water injection to support reservoir pressure will decrease the pore and fracture pressure. Moreover, this depletion will affect the distribution of stress and change the mud weight window. This study focused on vertical stress, maximum and minimum horizontal stress redistributions in the depleted reservoirs due to decreases in pore pressure and, consequently, the effect on the mud weight window. 1D and 4D robust geomechanical models are
This work presents the use of laser diode in the fiber distributed data interface FDDI networks. FDDI uses optical fiber as a transmission media. This solves the problems resulted from the EMI, and noise. In addition it increases the security of transmission. A network with a ring topology consists of three computers was designed and implemented. The timed token protocol was used to achieve and control the process of communication over the ring. Nonreturn to zero inversion (NRZI) modulation was carried out as a part of the physical (PHY) sublayer. The optical system consists of a laser diode with wavelength of 820 nm and 2.5 mW maximum output power as a source, optical fiber as a channel, and positive intrinsic negative (PIN) photodiode
... Show MoreIn this study a combination of two basics known methods used to daily prediction of solar insolation in Baghdad city, Iraq, for the first time, the harmonic and the classical linear regression analyses, thus it is called HARLIN model. The resulted prediction data compared with basics data for Baghdad city for two years (2010-2011), where the model showed a great success application in the accurate results, compared with the linear famous and well known model which is used the classical linear Angstrom equations with various formulations in many previous studies.
The two parameters of Exponential-Rayleigh distribution were estimated using the maximum likelihood estimation method (MLE) for progressively censoring data. To find estimated values for these two scale parameters using real data for COVID-19 which was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. Then the Chi-square test was utilized to determine if the sample (data) corresponded with the Exponential-Rayleigh distribution (ER). Employing the nonlinear membership function (s-function) to find fuzzy numbers for these parameters estimators. Then utilizing the ranking function transforms the fuzzy numbers into crisp numbers. Finally, using mean square error (MSE) to compare the outcomes of the survival
... Show MoreThis study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (
Experimental tests were carried to control lost circulation in the Khabaz oil field using different types of LCMs including Nano-materials. A closed-loop circulation system was built to simulate the process of lost circulation into formations. Two dolomite plugs were used from different depths of the formation of Azkand in Khabaz oil field. The experimentations were carried out to study the effect of different types of LCMs, cross-linked copolymer (FLOSORB CE 300 S), SiO2 NP, and Fe2O3 NP, on mud volume losses as a function of time.
The rheological measurements of the nanoparticles-reference mud system showed that both of the SiO2 NP and Fe2O3 NP w
... Show MoreThe cutting transport problem in the drilling operation is very complex because many parameters impact the process, which is nonlinearity interconnected. It is an important factor affecting time, cost and quality of the deviated and horizontal well. The main objective is to evaluate the influence of main drilling Parameters, rheological properties and cuttings that characterise lifting capacity through calculating the minimum flow rate required and cutting bed height and investigate these factors and how they influenced stuck pipe problems in deviated wells for Garraf oil field. The results obtained from simulations using Well Plan™ Software were showed that increasing viscosity depends on other conditions for an increase or dec
... Show MoreAn optimization analysis of drilling process constitutes a powerful tool for operating under desired pressure levels and simultaneously maximizing the penetration rate, which reduces costs and time thus increases the profit.
In this study, a composite drilling model (Young-Bourgyen model) of eight functions was used to determine the optimum drilling mechanical parameters (Weight on bit and rotary speed) for an Iraqi oil field. These functions model the effect of most drilling parameters such as formation strength, mud density, formation compaction, weight on bit, rotary speed, tooth dullness, and bit hydraulic on drilling rate. Data are extracted from bit record and drilling report of well BUZ-20 for calculation of eight exponents of