Many neuroscience applications, including understanding the evolution of the brain, rely on neural cell instance segmentation, which seeks to integrate the identification and segmentation of neuronal cells in microscopic imagery. However, the task is complicated by cell adhesion, deformation, vague cell outlines, low-contrast cell protrusion structures, and background imperfections. On the other hand, existing segmentation approaches frequently produce inaccurate findings. As a result, an effective strategy for using the residual network with attention to segment cells is suggested in this paper. The segmentation mask of neural cells may be accurately predicted. This method is built on U-net, with EfficientNet serving as the encoder's backbone. The attention approach is employed in the detection and segmentation modules to guide the model's attention to the most valuable features. A massive collection of neural cell microscopic images tests the proposed method. According to the findings of the experiments, this technology can accurately detect and segment neuronal cell occurrences with an intersection over the union IoU of 95.47 and a Dice-Coeff of 98.34, which is superior to current state-of-the-art approaches.
The Tigris River in Iraq is of highly meandering in several of its parts. So, the largest meandering inside Baghdad City, is in Al-Jadriyah. During its course, the Tigris Riverbanks are facing erosion frequently due to alteration in the geomorphological and hydrological characteristics affecting the river channel. The entire length of Tigris River from the northern entrance of Baghdad to the convergence with Diyala River at southern of Baghdad is about 49 km length. The Tigris River is suffering from the erosion, deposition, and migration conditions. The river migration was found as maximum in the left bank at the side of the University, and lesser in the right bank in the opposite side, Dora. The aim of this study is to measure the magn
... Show More