Preferred Language
Articles
/
ijs-6586
Machine Learning Based Crop Yield Prediction Model in Rajasthan Region of India
...Show More Authors

     The present study investigates the implementation of machine learning models on crop data to predict crop yield in Rajasthan state, India. The key objective of the study is to identify which machine learning model performs are better to provide the most accurate predictions. For this purpose, two machine learning models (decision tree and random forest regression) were implemented, and gradient boosting regression was used as an optimization algorithm. The result clarifies that using gradient boosting regression can reduce the yield prediction mean square error to 6%. Additionally, for the present data set, random forest regression performed better than other models. We reported the machine learning model's performance using Mean Squared Error, Mean Absolute Error and R-squared and identified that after the inclusion of gradient boosting regression, the accuracy increased to 92.77%. The MAE value decreased from 26.20 Mg/ha to 21.58 Mg/ha. The results indicate that machine learning models can improve the prediction of crop yield.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
An Overview of Audio-Visual Source Separation Using Deep Learning
...Show More Authors

    In this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue May 07 2019
Journal Name
Acm Journal On Emerging Technologies In Computing Systems
Neuromemrisitive Architecture of HTM with On-Device Learning and Neurogenesis
...Show More Authors

Hierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutil

... Show More
View Publication
Scopus (12)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Tue Apr 30 2024
Journal Name
International Journal On Technical And Physical Problems Of Engineering
Deep Learning Techniques For Skull Stripping of Brain MR Images
...Show More Authors

Deep Learning Techniques For Skull Stripping of Brain MR Images

Scopus
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Using Wild Plant Species Grown in Wadi Al – Tib Region North East of Al – Ammara, Iraq, as Indicators of Heavy Metals Accumulation
...Show More Authors

The current study included, studying the ability of eight genera of plants belong to Brassicaceae family, Brassica tournifortii, Cakile Arabica, Capsella bursa – pastoris,Carrichtera annua, Diplotaxis acris, Diplotaxis haru , Eruca sativa and Erucaria hispanica to accumulate ten heavy metals Cadmium, Chromium , Copper, Mercury, Manganese ,Nickel ,Lead ,and Zinc . Plant leaves samples were collected from Al-Tib area during spring of 2021.The data demonstrated that, the highest conc. of Cd was 2.7 mg/kg in Diplotaxis acris leaves and lower value was 0.3 mg/kg in Cakile Arabica leaves. For Co, the highest conc.was 1.3 mg/kg in Capsella bursa – pastoris leaves, whereas the lower value was 0.5 mg/kg in Cakile arabica leaves. As for Cr ele

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Mon Jan 27 2025
Journal Name
Journal Of Oral And Dental Research
Prevalence of Orofacial Clefts: A Retrospective Crosssectional Analysis of Gynecology and Obstetrics Hospital Records in the City of Sulaimani, Kurdistan Region of Iraq
...Show More Authors

View Publication Preview PDF
Publication Date
Sat Dec 31 2022
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
EFFECT OF ORGANIC FERTILIZER SOURCRS AND CHEMICL FERTILIZATION ON SOME SOIL PHYSICL TRAITS AND YIELD OF SUMMER SQUASH (Cucurbta Pepo L.): EFFECT OF ORGANIC FERTILIZER SOURCRS AND CHEMICL FERTILIZATION ON SOME SOIL PHYSICL TRAITS AND YIELD OF SUMMER SQUASH (Cucurbta Pepo L.)
...Show More Authors

ABSTRACT

            The results showed that the organic fertilizer mixture (1:1) 30 tons/ha with chemical fertilization recorded the lowest level of bulk density of 1.2 g/cm3, the organic fertilizer mixture (1:1) 30 tons/ha with chemical fertilization recorded the highest percentage of aggregation stability amounting to 16.17%, the organic fertilizer palm fronds recorded the highest level of ready water with an average of 5.50 cm3/cm3 and the organic fertilizer mixture (1:1) 30 tons/ha without chemical fertilization recorded the highest level of ready water as it reached 6.93%, the or

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
Predicting Social Security Fund compensation in Iraq using ARMAX Model
...Show More Authors

Time series have gained great importance and have been applied in a manner in the economic, financial, health and social fields and used in the analysis through studying the changes and forecasting the future of the phenomenon. One of the most important models of the black box is the "ARMAX" model, which is a mixed model consisting of self-regression with moving averages with external inputs. It consists of several stages, namely determining the rank of the model and the process of estimating the parameters of the model and then the prediction process to know the amount of compensation granted to workers in the future in order to fulfil the future obligations of the Fund. , And using the regular least squares method and the frequ

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Iosr Journal Of Computer Engineering
Lossy Image Compression Using Wavelet Transform, Polynomial Prediction And Block Truncation Coding
...Show More Authors

View Publication
Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Swab – Surge Pressure Investigation, and the Influence Factors, Prediction and Calculation (Review)
...Show More Authors

Surge pressure is supplemental pressure because of the movement of the pipes downward and the swab pressure is the pressure reduction as a result of the drill string's upward movement. Bottom hole pressure is reduced because of swabbing influence. An Investigation showed that the surge pressure has great importance for the circulation loss problem produced by unstable processes in the management pressure drilling (MPD) actions. Through Trip Margin there is an increase in the hydrostatic pressure of mud that compensates for the reduction of bottom pressure due to stop pumping and/or swabbing effect while pulling the pipe out of the hole. This overview shows suggested mathematical/numerical models for simulating surge pressure problems ins

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Convolutional Multi-Spike Neural Network as Intelligent System Prediction for Control Systems
...Show More Authors

The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed

... Show More
View Publication Preview PDF
Crossref (1)
Crossref