The purpose of this study is to calculate the effect of the elastic wall of a hollow channel of Jeffrey's fluid by peristaltic flow through two concentric cylinders. The inside tube is cylindrical and the outside is a regular elastic wall in the shape of a sine wave. Using the cylindrical coordinates and assuming a very short wavelength relative to the width of the channel to its length and using governing equations for Jeffrey’s fluid in Navier-Stokes equations, the results of the problem are obtained. Through the Mathematica program these results are analysed.
During this article, we have a tendency to show the peristaltic activity of magnetohydrodynamics flow of carreau fluid with heat transfer influence in an inclined tapered asymmetric channel through porous medium by exploitation the influence of non-slip boundary conditions. The tapered asymmetric channel is often created because of the intrauterine fluid flow induced by myometrial contraction and it had been simulated by asymmetric peristaltic fluid flow in an exceedingly two dimensional infinite non uniform channel, this fluid is known as hereby carreau fluid, conjointly we are able to say that one amongst carreau's applications is that the blood flow within the body of human. Industrial field, silicon oil is an example of carreau
... Show MoreThis article aims to introducenumerical study of two different incompressible Newtonian fluid flows. The first type of flow is through the straight channel, while the second flow is enclosed within a square cavity and the fluid is moved by the upper plate at a specific velocity. Numerically, a Taylor-Galerkin\ pressure-correction finite element method (TGPCFEM) is chosen to address the relevant governing equations. The Naiver-Stoke partial differential equations are usually used to describe the activity of fluids. These equations consist of the continuity equation (conservation of mass) and the time-dependent conservation of momentum, which are preserved in Cartesian coordinates. In this study, the effect of Reynolds number (
... Show MoreIn this paper, we study the effects of a magnetic force on the flow of hybrid bio - nano fluid (Cu - Au. NPs) for a peristaltic channel through a porous medium in an asymmetric channel. Nanoparticles of gold and copper as well as the blood (the base fluid) is taken into account. By using the Adomian decomposition method to solve the governing equations, formulas for velocity, stream function, temperature, current density, and magnetic force have been obtained. The findings show that Gold nanoparticles have an elevation magnetic force compared with copper nanoparticles, based on fluid (blood) and hybrid nanofluid. Finally, the phenomenon of trapping is offered as an explanation for the physical behavior of many parameters. The ef
... Show MoreIn this present paper , a special model was built to govern the equations of two dimensional peristaltic transport to nanofluid flow of a heat source in a tapered considered in an asymmetric channel. The equations of dimensionless temperature concentration are analytical solve under assumption slow Reynolds number and long wave length. Furthermore, the results that receive by expressing the maximum pressure rise communicates increased in case of non-Newtonian fluid when equated with Newtonian fluid. Finally, MATHEMATICA 11 program has been used to solve such system after obtaining the initial conditions. Most of the results of drawing for many are obtained via above program .
This paper is devoted to the study of the peristaltic transport of viscoelastic non-Newtonian fluids with fractional Maxwell model in an inclined channel. Approximate analytical solutions have been constructed using Adomain decomposition method under the assumption of long wave boundary layer type approximation and low Reynolds number. The effect of each of relaxation time, fractional parameters, Reynolds number, Froude number, inclination of channel and amplitude on the pressure difference, friction force and stream function along one wavelength are received and analyzed.
This paper is devoted to the study of the peristaltic transport of viscoelastic non-Newtonian fluids with fractional Maxwell model in an inclined channel. Approximate analytical solutions have been constructed using Adomain decomposition method under the assumption of long wave boundary layer type approximation and low Reynolds number. The effect of each of relaxation time, fractional parameters, Reynolds number, Froude number, inclination of channel and amplitude on the pressure difference, friction force and stream function along one wavelength are received and analyzed.
In this paper, analyzing the non-dimensional Magnesium-hydrodynamics problem Using nanoparticles in Jeffrey-Hamel flow (JHF) has been studied. The fundamental equations for this issue are reduced to a three-order ordinary differential equation. The current project investigated the effect of the angles between the plates, Reynolds number, nanoparticles volume fraction parameter, and magnetic number on the velocity distribution by using analytical technique known as a perturbation iteration scheme (PIS). The effect of these parameters is similar in the converging and diverging channels except magnetic number that it is different in the divergent channel. Furthermore, the resulting solutions with good convergence and high accuracy for the d
... Show MoreIn this article the peristaltic transport of viscoelastic fluid through irregular microchannel under the effect of Hall current, varying viscosity and porous medium is investigated. The mathematical expressions for the basic flow equations of motion are formulated and transformed into a system of ordinary differential equations by utilizing appropriate non dimensional quantities. The exact solution for the temperature distribution is obtained, while perturbation series solution for the stream function in terms of tiny viscosity parameter is used. Graphical illustrations are presented to capture the physical impact of embedded parameters in the fluid flow i.e. the fluid velocity field, temperature distribution, pressure rise, and
... Show MoreThe present paper concerns with peristaltic analysis of MHD viscous fluid in a two dimensional channel with variable viscosity through a porous medium under the effect of slip condition. Along wave length and low Reynolds number assumption is used in the problem formulation. An analytic solution is presented for the case of hydrodynamic fluid while for magneto hydrodynamic fluid a series solution is obtained in the small power of viscosity parameter. The salient features of pumping and trapping phenomena are discussed in detail through a numerical integration. The features of the flow characteristics are analyzed by plotting graphs and discussed in detail. When .
The aim of this paper is to study the combined effects of the concentration and the thermo-diffusion on the unsteady oscillation flow of an incompressible Carreau fluid through an inclined porous channel. The temperature is assumed to affect exponentially the fluid's viscosity. We studied fluid flow in an inclined channel under the non-slip condition at the wall. We used the perturbation series method to solve the nonlinear partial differential equations. Numerical results were obtained for velocity distribution, and through the graphs, it was found that the velocity of fluid has a direct relation with Soret number, Peclet number, and Grashof number, while it has a reverse variation with chemical reaction, Schmidt number, frequency of os
... Show More