As a result of the pandemic crisis and the shift to digitization, cyber-attacks are at an all-time high in the modern day despite good technological advancement. The use of wireless sensor networks (WSNs) is an indicator of technical advancement in most industries. For the safe transfer of data, security objectives such as confidentiality, integrity, and availability must be maintained. The security features of WSN are split into node level and network level. For the node level, a proactive strategy using deep learning /machine learning techniques is suggested. The primary benefit of this proactive approach is that it foresees the cyber-attack before it is launched, allowing for damage mitigation. A cryptography algorithm is put forth and contrasted with the current algorithms at the network level. Elliptic Curve Cryptography combined with the Koblitz encoding technique produced superior results. By implementing machine learning and deep learning techniques, wireless sensor networks are protected against cyber-attacks, and the suggested encryption approach ensures the confidentiality of data transfer. The estimated encryption and decryption times were evaluated with various file sizes and contrasted with the current systems. The suggested solutions were successful in achieving security at both the node level and network level.
In the current digitalized world, cloud computing becomes a feasible solution for the virtualization of cloud computing resources. Though cloud computing has many advantages to outsourcing an organization’s information, but the strong security is the main aspect of cloud computing. Identity authentication theft becomes a vital part of the protection of cloud computing data. In this process, the intruders violate the security protocols and perform attacks on the organizations or user’s data. The situation of cloud data disclosure leads to the cloud user feeling insecure while using the cloud platform. The different traditional cryptographic techniques are not able to stop such kinds of attacks. BB84 protocol is the first quantum cry
... Show MoreThe objective of this research is employ the special cases of function trapezoid in the composition of fuzzy sets to make decision within the framework of the theory of games traditional to determine the best strategy for the mobile phone networks in the province of Baghdad and Basra, has been the adoption of different periods of the functions belonging to see the change happening in the matrix matches and the impact that the strategies and decision-making available to each player and the impact on societ
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreThe efficiency evaluation of the railway lines performance is done through a set of indicators and criteria, the most important are transport density, the productivity of enrollee, passenger vehicle production, the productivity of freight wagon, and the productivity of locomotives. This study includes an attempt to calculate the most important of these indicators which transport density index from productivity during the four indicators, using artificial neural network technology. Two neural networks software are used in this study, (Simulnet) and (Neuframe), the results of second program has been adopted. Training results and test to the neural network data used in the study, which are obtained from the international in
... Show MoreThis work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show MoreWith the freedom offered by the Deep Web, people have the opportunity to express themselves freely and discretely, and sadly, this is one of the reasons why people carry out illicit activities there. In this work, a novel dataset for Dark Web active domains known as crawler-DB is presented. To build the crawler-DB, the Onion Routing Network (Tor) was sampled, and then a web crawler capable of crawling into links was built. The link addresses that are gathered by the crawler are then classified automatically into five classes. The algorithm built in this study demonstrated good performance as it achieved an accuracy of 85%. A popular text representation method was used with the proposed crawler-DB crossed by two different supervise
... Show MoreA content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a
... Show MoreDifferent formula of bioagents (Rhizobium cicceri cp-93, Azospirillum sp.,
Pseudomonas fluorescence, Trichoderma harzianum ) used in this study as a
biofertilizer on wheat crop with two level of chemical fertilizer (0 and 12.5
kg/donm Dap) compared to 50kg/donm Dap (standard amount).the study carried out
in Iraq/Diyala –Alkhales during November 2014,results showed significant increase
in no. of spikes, no. of spikelet’s, length of spike ,Weight of 1000 seed and yield of
one m2 when adding (Rhizobium cicceri cp-93,Azospirillumsp+ Trichoderma
harzianum +12.5 kg/donm Dap) in comparison with the 50kg/donm Dap. Other
formulas recorded same results with the treatment 50kg/Donm Dap with not
significant differences
Background: Interleukin-6 (IL-6) is a cytokine that has several functions, including stimulating growth and inhibiting cell death. It has the potential to operate as a biomarker for the accurate prediction of disease severity and activity, platelets-rich plasma was used in the treatment of oral lichen planus and can change the salivary IL-6 level.
Objectives: To study the clinical outcome of intralesional platelets-rich plasma in patients with oral lichen planus and to measure salivary IL-6 levels before and after the treatment with platelets-rich plasma were the aims of this study.
Subjects and Methods: In this clinical trial, for each patient a standardi
... Show More