As a result of the pandemic crisis and the shift to digitization, cyber-attacks are at an all-time high in the modern day despite good technological advancement. The use of wireless sensor networks (WSNs) is an indicator of technical advancement in most industries. For the safe transfer of data, security objectives such as confidentiality, integrity, and availability must be maintained. The security features of WSN are split into node level and network level. For the node level, a proactive strategy using deep learning /machine learning techniques is suggested. The primary benefit of this proactive approach is that it foresees the cyber-attack before it is launched, allowing for damage mitigation. A cryptography algorithm is put forth and contrasted with the current algorithms at the network level. Elliptic Curve Cryptography combined with the Koblitz encoding technique produced superior results. By implementing machine learning and deep learning techniques, wireless sensor networks are protected against cyber-attacks, and the suggested encryption approach ensures the confidentiality of data transfer. The estimated encryption and decryption times were evaluated with various file sizes and contrasted with the current systems. The suggested solutions were successful in achieving security at both the node level and network level.
Abstract
In this work, diabetic glucose concentration level control under disturbing meal has been controlled using two set of advanced controllers. The first set is sliding mode controllers (classical and integral) and the second set is represented by optimal LQR controllers (classical and Min-, ax). Due to their characteristic features of disturbance rejection, both integral sliding mode controller and LQR Minmax controller are dedicated here for comparison. The Bergman minimal mathematical model was used to represent the dynamic behavior of a diabetic patient’s blood glucose concentration to the insulin injection. Simulations based on Matlab/Simulink, were performed to verify the performance of each controll
... Show MoreThe current research aims to prepare a proposed Programmebased sensory integration theory for remediating some developmental learning disabilities among children, researchers prepared a Programme based on sensory integration through reviewing studies related to the research topic that can be practicedby some active teaching strategies (cooperative learning, peer learning, Role-playing, and educational stories). The Finalformat consists of(39) training sessions.
The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. T
... Show MoreCigarette smoke contains a lot of toxic and oxidizing materials which causes body toxicity and reduces antioxidant that results in many diseases. In this study, levels of Zinc and Copper (which are antioxidant) were measured in serum of smokers and nonsmokers. It was found that the level of Zinc in serum of smokers was significantly lower than nonsmokers because nitric oxide which is one of cigarette contents acts to increase zinc loss, also a significantly lower copper levels were found in smokers than nonsmokers due to consumption of copper in reducing cadmium toxicity which is a cigarette smoke content
Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing
... Show MoreThis paper present the fast and robust approach of English text encryption and decryption based on Pascal matrix. The technique of encryption the Arabic or English text or both and show the result when apply this method on plain text (original message) and how will form the intelligible plain text to be unintelligible plain text in order to secure information from unauthorized access and from steel information, an encryption scheme usually uses a pseudo-random enecryption key generated by an algorithm. All this done by using Pascal matrix. Encryption and decryption are done by using MATLAB as programming language and notepad ++to write the input text.This paper present the fast and robust approach of English text encryption and decryption b
... Show MoreThyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show MoreThere is substantial data supporting the importance of both endogenous and exogenous estrogen in maintaining reproductive health and preventing chronic disease, androgens in women's health are rarely discussed. This is one of the first researches to investigate correlates of blood testosterone concentrations in women with osteopenia, in anticipation of the growing interest in the role of androgens in women's health. A 65 volunteer women were enrolled in the current study, they were divided into two groups, 35 postmenopausal women with osteopenia were in the first group, and the second group contained 30 postmenopausal women without osteopenia as a control. Blood samples were collected from all participants and analyzed for testosterone l
... Show More