The cozy partitions achieved more creativity by emerging with many topics in representation theory and mathematical relations. We find the precise number of cozy tableaux in the case with any number of and . Specifically, we use the MATLAB programme that coincided with the mathematical solution in giving precision to these numbers in this case.
Let
be an
module, and let
be a set, let
be a soft set over
. Then
is said to be a fuzzy soft module over
iff
,
is a fuzzy submodule of
. In this paper, we introduce the concept of fuzzy soft modules over fuzzy soft rings and some of its properties and we define the concepts of quotient module, product and coproduct operations in the category of
modules.
Lean Six Sigma methodologies and Ergonomics principles are the main pillars of this work given their importance in the implementation of continuous improvement in assembly workstations design. When looking at the introduction of the Ergonomics that has been affected by the integration of the Lean and Six Sigma for improvements, it is necessary to understand why these methodologies belong to each other and how they can be handled in the industrial field. The aim of the work seeks towards the impact of analyzing the integration of the basics tools of Lean and Six Sigma that enhanced Ergonomics highlighted the importance of using the priority matrix in the selection of the priority criteria. Two models of a system based on
... Show MoreIn this article, an attempt has been made to introduce the concept of Neutrosophic d-Filter and Neutrosophic Prime d-Filter of d-Algebra by generalizing the notion of Intuitionistic Fuzzy d-Filter of d-Algebra. Besides, we establish different properties of them. Further, we study several relations on this notion from the point of view of Neutrosophic d-Algebra.
Let M be an R-module. We introduce in this paper the concept of strongly cancellation module as a generalization of cancellation modules. We give some characterizations about this concept, and some basic properties. We study the direct sum and the localization of this kind of modules. Also we prove that every module over a PID is strongly module and we prove every locally strong module is strongly module.
Solar photovoltaic (PV) system has emerged as one of the most promising technology to generate clean energy. In this work, the performance of monocrystalline silicon photovoltaic module is studied through observing the effect of necessary parameters: solar irradiation and ambient temperature. The single diode model with series resistors is selected to find the characterization of current-voltage (I-V) and power-voltage (P-V) curves by determining the values of five parameters ( ). This model shows a high accuracy in modeling the solar PV module under various weather conditions. The modeling is simulated via using MATLAB/Simulink software. The performance of the selected solar PV module is tested experimentally for differ
... Show MoreLet R be a Γ-ring and G be an RΓ-module. A proper RΓ-submodule S of G is said to be semiprime RΓ-submodule if for any ideal I of a Γ-ring R and for any RΓ-submodule A of G such that or which implies that . The purpose of this paper is to introduce interesting results of semiprime RΓ-submodule of RΓ-module which represents a generalization of semiprime submodules.
In this work, we prove by employing mapping Cone that the sequence and the subsequence of the characteristic-zero are exact and subcomplex respectively in the case of partition (6,6,4) .
Let M be an R-module, where R is commutative ring with unity. In this paper we study the behavior of strongly hollow and quasi hollow submodule in the class of strongly comultiplication modules. Beside this we give the relationships between strongly hollow and quasi hollow submodules with V-coprime, coprime, bi-hollow submodules.
In this paper, the terms of Lascoux and boundary maps for the skew-partition (11,7,5) / (1,1,1) are found by using the Jacobi-Trudi matrix of partition. Further, Lascoux resolution is studied by using a mapping Cone without depending on the characteristic-free resolution of the Weyl module for the same skew-partition.
The aim of this work is to survey the two rows resolution of Weyl module and locate the terms and the exactness of the Weyl Resolution in the case of skew-shape (8,6)/(2,1).