Ferrites with the formula Cu0.5Ti0.5HoxFe2-xO4 (x= 0 and 0.09) were prepared by standard ceramic method. The powder mixtures were presintered at 900 oC for 5h. The final sintering of the pellets was performed at 1100 oC for 2 hrs. The dielectric properties and AC conductivity were measured at different temperatures over the frequency range 100Hz - 10MHz. The variation in dielectric constant with frequency revealed that dispersion is due to the Maxwell–Wagner type of interfacial polarization in accordance with Koop’s phenomenological theory. This ferrite showed high value of dielectric constant. At low frequencies the dielectric constant and dielectric loss factor was found to decrease with the increase in frequency and Ho addition. The dielectric loss decreased with temperature rise. The frequency dependence of dielectric loss tangent is found to be abnormal at various temperatures, the abnormal behavior of dielectric relaxation processes was observed. The prepared ferrite showed low range of AC conductivity. The AC conductivity was noticed to increase with frequency and temperature. While the conductivity decreased with Ho addition.
The influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increases films thickness was fond to increase the electrical cAnductivity whereas the activation energy (Ea) would vary with films thickness. Hall Effect analysis resu
... Show MoreThe influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increase films thickness was fond to increase the electrical conductivity whereas the activation energy (Ea) would vary with f
... Show MoreThe research work covers a study of the possibility of producing porous ceramic bodies
as a thermal insulators by adding fired Dechla kaolinite (grog)to the same non burned
kaolinite.
Different weight percentage ranged between (0,15,25,35and40)from grog and sawdust
passed through mesh 50 to Deuchla-clay kaolinit.Cylindrical shape samples (30mm diameter
and 30mm height) were prepared by the semi-dry methed,moulding pressure was 50 N/mm
2
.
After drying at 110
o
c,the samples were burnet in the furnace at temperatures
900,950,1000,1050,and 1100
o
c. The sawdust burnt out and leaves air spaces which contribute
to the high thermal insulation value.
The fired samples were investigated to de
The influence of different thickness (500,750, and 1000) nm on the structure properties electrical conductivity and hall effect measurements have been investigated on the films of copper indium selenide CuInSe2 (CIS) the films were prepared by thermal evaporation technique on glass substrates at RT from compound alloy. The XRD pattern show that the film have poly crystalline structure a, the grain size increasing with as a function the thickness. Electrical conductivity (σ), the activation energies (Ea1,Ea2), hall mobility and the carrier concentration are investigated as function of thickness. All films contain two types of transport mechanisms of free carriers increase films thickness. The electrical conductivity increase with thickness
... Show MoreIn this research the electrical conductivity and optical measurements were made on the Iron Oxide (Fe2O3) films prepared by chemical spray pyrolysis method as a function of thickness (250, 350, 450, and 550)  20 nm. The measurements of electrical conductivity (σ), activation energies (Ea1, Ea2),and optical constant such as absorption coefficient, refractive index, extinction coefficient and the dielectric constants for the wavelengths in the range (300-900) nm have been investigated on (Fe2O3) thin films as a function of thickness. All films contain two types of transport mechanisms, and the electrical conductivity (σ) increases whereas the activation energy (Ea) would decrease as the films thi
... Show MoreA study carried out on ceramic material made at (a-Al2O3) doped with MgO (0.5 , 0.3 , 0.2,0.1)%,with particle size at 63mm.
A Hydraulic press of 5kn at diameter of 2cm.A nnalelling at 1500Co and 6 hrs still to see the effect on the changes of the dielectric material. With frequency range at (1K – 1M) Hz. And the result show that at percentage of 0.5% of MgO, the real dielectric material decreased with the increased frequency
Pre-breakdown phenomenon was investigated within the two, non-mixed dielectric liquids; transformation oil and cresol. Finite element technique was used to follow the initiation and growth of plasma channels (streamer discharge) within pin-plane configuration. That was done for different spacing between the pin-electrode and the liquid-liquid interface. Streamer growth model assumed that, the streamer initiation occurs at the region of the highest value of electric field. Our study shows that the streamer initiates at the tip of the pin and growths toward the other electrode. The study shows, too, that the streamer path controlled by the difference of permittivity of the two liquids and spacing distance of the liquid-liquid interface fro
... Show MoreTin dioxide (SnO2) were mixed with (TiO2 and CuO) with concentration ratio (50, 60, 70, 80 and 90) wt% films deposited on single crystal Si and glass substrates at (523 K) by spray pyrolysis technique from aqueous solutions containing tin (II) dichloride Dihydrate (SnCl2, 2H2O), dehydrate copper chloride (CuCl2.2H2O) and Titanium(III) chloride (TiCl3) with molarities (0.2 M). The results of electrical properties and analysis of gas sensing properties of films are presented in this report. Hall measurement showed that films were n-type converted to p- type as titanium and copper oxide added at (50) % ratio. The D.C conductivity measurements referred that there are two mechanisms responsible about the conductivity, hence it possess two act
... Show MoreAbstract
Semiconductor-based gas sensors were prepared, that use n-type tin oxide (SnO2) and tin oxide: zinc oxide composite (SnO2)1-x(ZnO)x at different x ratios using pulse laser deposition at room temperature. The prepared thin films were examined to reach the optimum conditions for gas sensing applications, namely X-ray diffraction, Hall effect measurements, and direct current conductivity. It was found that the optimum crystallinity and maximum electron density, corresponding to the minimum charge carrier mobility, appeared at 10% ZnO ratio. This ratio appeared has the optimum NO2 gas sensitivity for 5% gas concentration at 300 °C working temperat
... Show More