In this research, the effect of electrode material on the parameters of the produced DBD plasma was investigated. First, a non-thermal plasma was created by applying a 15 kV AC voltage between two electrodes and using a glass plate as a dielectric barrier in the design Dielectric Barrier Discharge (DBD) plasma system. The obtained plasma spectrum was analyzed using optical emission spectroscopy to calculate plasma parameters by the Boltzmann plot method. Electrodes made of copper, aluminium, and stainless steel were employed in this research. Electron temperature ( ) for copper, aluminium, and stainless steel was found to be (1.398 eV), (1.093 eV) and (1.009 eV), respectively.
This work is an experimental study about the effects of gas pressure and magnetic field on plasma characteristics produced in an internal hollow electrodes discharge (HED) system. The results show that the breakdown voltage values increase with increasing the working pressure (especially with the presence of a magnetic field). The breakdown voltage depends on the p.d. product, where p is the gas pressure and d is the distance between the electrodes. While the values of current discharge decrease with the increase of the working pressure. The temperature of electron and the number density of electron are calculated from the Boltzmann method and the broadening of Stark, respectively. The results showed that the electron number d
... Show MoreA number of pulsed experiments have been carried out using a high-voltage circuit containing R,L, and C in certain arrangements. A spherical spark gap of steel electrodes was used as a high-current switch operated by a voltage of up to 8kV and triggered in both self-triggering and third-electrode triggering modes. Current measurements were carried out by using both current-viewing resistor and Rogowski coils designed for this purpose. Typical current waveforms have shown obvious dominating inductance effect of the circuit components in an underdamped oscillation. The behavior of the circuit impedance was studied by recording both pulsed current peaks and the charging voltages when currents of up to 2.5kA were recorded. The dur
... Show MoreLength of plasma generated by dc gas discharge under different vacuum pressures was studied experimentally. The cylindrical discharge tube of length 2m was evacuated under vacuum pressure range (0.1-0.5) mbar at constant external working dc voltage 1500V. It was found that the plasma length (L) increased exponentially with increasing of background vacuum air pressure. Empirical equation has been obtained between plasma length and gas pressure by using Logistic model of curve fitting. As vacuum pressure increases the plasma length increases due to collisions, ionizations, and diffusions of electrons and ions.
This study illustrates the impact of non-thermal plasma (Cold Atmospheric Plasma CAP) on the lipids blood, the study in vivo. The lipids are (cholesterol, HDL-Cholesterol, LDL-Cholesterol and triglyceride) are tested. (FE-DBD) scheme of probe diameter 4cm is used for this purpose, and the output voltage ranged from (0-20) kV with variable frequency (0-30) kHz. The effect of non-thermal atmospheric plasma on lipids were studied with different exposure durations (20,30) sec. As a result, the longer plasma exposure duration decreases more lipids in blood.
In this research, a type of gram negative bacteria was exposed to non-thermal plasma at a distance of (2 and 3 cm) from the plasma flow nozzle, with the use of an alternating power supply (5KHz), where exposure was made at two different voltages (4.9 and 8 kV). A negative gram of Pseudomonas aeruginosa bacteria was isolated and exposed to non-thermal plasma at different flow rates of argon gas whose value ranged from (1-5) liters/minute. The results showed that bacterial killing rate is directly proportional to distance while exposing the samples to non-thermal plasma, and the best factors by which a complete killing rate was obtained were at a distance of 2 cm with a voltage of 8 kV and a gas flow rate of 5 liters/min,
... Show MoreIn this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the ar
... Show MoreMicrobiological contamination by fungi impacts the quality and safety of wheat grain storage. This study aimed to evaluate the efficacy of cold plasma in restricting the growth of the fungus, Aspergillus niger, which was isolated from wheat grains. A dielectric barrier discharge (DBD) operating at atmospheric pressure generated cold plasma that was used to treat the fungus, and the impact of this treatment was investigated at various periods 1, 2, 4, 6, and 15 minutes. The results revealed a highly significant decrease in the growth and number of spores of Aspergillus niger compared to the controls. This study revealed an efficient technique for enhancing wheat grain storage that could be a foundation for further large-scale studies.
... Show MoreIn this paper, ZnO NPs were prepared using D.C high-voltage and high frequency with an output of 6 kHz at two different preparation times preparation (10,12) minutes. Transmission electron microscopy (TEM) with (FE-SEM) was used to examine the homogenous, compact, and dense surface of the zinc oxide nanoparticles created with apparent grain size determined by (XRD), XRD results explain that the increase of the preparation time from 10 minutes to 12-minute caused an increase in crystallite size. In addition, FE-SEM showed that the increase in the ZnO NPs cluster distribution with particle size increases with increasing the preparation time. AFM was also utilized to determine the degree of cooperation between the surfaces of the z
... Show MoreA simple low-cost approach at various exposure times was utilized to generate cold plasma in the aim to fabricate AuNPs. UV-Visible spectra and X-ray diffraction were used to characterize the nanoparticles (XRD). Surface Plasmon resonance was observed in the synthesized AuNPs at 530, 540, and 533 nm. For all samples, the patterns of XRD show very intensive peaks implying the fcc crystalline structure of AuNPs. The average crystallite size of AuNPs is ranging between 20-30 nm. The observation of morphology by FESEM revealed the spherical formation of AuNPs. Doses of 100 and 200 ppm of AuNPs were adapted to investigate their effect on the blood-mixture with and without a 20-second of cold plasma exposure. The WBC components in the blood
... Show MoreObjectives: Maxillofacial silicone is used to restore abnormalities due to congenital or acquired causes. However, the quality of silicone is far from ideal. This study was aimed at assessing the influence of the addition of cellulose nanofibers (CNFs; several nanometers wide and 2-5 micro m long) on the physical and mechanical characteristics of maxillofacial silicone elastomers. Methods: Two CNF weight percentages (0.5% and 1%) were tested, and 180 specimens were divided into one control and two experimental groups. Each group was subdivided into six subgroups. In each subgroup, ten specimens subjected to each of the following tests: tearing strength, Shore-A hardness, tensile strength, elongation percentage, surface roughness, and color
... Show More