One of the most interested problems that recently attracts many research investigations in Protein-protein interactions (PPI) networks is complex detection problem. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem wherein, recently, the field of Evolutionary Algorithms (EAs) reveals positive results. The contribution of this work is to introduce a heuristic operator, called protein-complex attraction and repulsion, which is especially tailored for the complex detection problem and to enable the EA to improve its detection ability. The proposed heuristic operator is designed to fine-grain the structure of a complex by dividing it into two more complexes, each being distinguished with a core protein. Then, it is possible for each of the remaining proteins associated with the original coarse-grained complex to repulse from one of the new generated complexes while attracted by the core protein of the second complex. The topology-based complex detection models presented in the literature are adopted to inter-play with the proposed heuristic operator inside the EA general framework. To assess the performance of the EA when coupled with the proposed heuristic operator, the well known Saccaromycaes Cerevisiae yeast PPI network and one reference set of benchmark complexes created from MIPS are used in the experiments. The results prove the positive impact of the heuristic operator to harness the strength of almost all adopted EA models.
ناقش البحث في طياته عدداً من القضايا الرئيسة المتعلقة بالتقييم الاستراتيجي والإطار العام للخطة الاستراتيجية المقترحة لشركة نفط ميسان للسنوات الخمس المقبلة (2020_2024)، وهدف هذا البحث يتمحور في تقييم عملية صياغة استراتيجية شركة نفط ميسان لتحديد نقاط القوة وتعضيدها ومواطن الضعف ومحاولة معالجتها لتجنب الوقوع بها عند وضع استراتيجية للسنوات القادمة، وعلى هذا الاساس فان مشكلة البحث تكمن في مدى نجاح الاستراتي
... Show MoreAchieving reliable operation under the influence of deep-submicrometer noise sources including crosstalk noise at low voltage operation is a major challenge for network on chip links. In this paper, we propose a coding scheme that simultaneously addresses crosstalk effects on signal delay and detects up to seven random errors through wire duplication and simple parity checks calculated over the rows and columns of the two-dimensional data. This high error detection capability enables the reduction of operating voltage on the wire leading to energy saving. The results show that the proposed scheme reduces the energy consumption up to 53% as compared to other schemes at iso-reliability performance despite the increase in the overhead number o
... Show MoreThis project sought to fabricate a flexible gas sensor based on a short functionalized multi-walled carbon nanotubes (f-MWCNTs) network for nitrogen dioxide gas detection. The network was prepared by filtration from the suspension (FFS) method and modified by coating with a layer of polypyrrole conductive polymer (PPy) prepared by the oxidative chemical polymerization to improve the properties of the network. The structural, optical, and morphological properties of the f-MWCNTs and f-MWCNTs/PPy network were studied using X-ray diffraction (XRD), Fourie-transform infrared (FTIR), with an AFM (atomic force microscopy). XRD proved that the structure of f-MWCNTs is unaffected by the synthesis procedure. The FTIR spectra verified the existence o
... Show MoreThe research aims to know (the effect of the pdeode strategy) in acquiring historical concepts among the fourth-grade literary female students in the history module. To achieve the goal of this research, the following null hypothesis was formulated. There is no statistically significant difference at the level of (0.05) between the average scores of the experimental group students, who study history according to the PDEODE strategy, and the average scores of the control group students who study the same module in the traditional way of the historical concepts acquisition test.The researcher chose the experimental method for the current research and adopted the experimental design of partial control with a post-test, which depends on the
... Show MoreThis paper introduces a Laplace-based modeling approach for the study of transient converter-grid interactions. The proposed approach is based on the development of two-port admittance models of converters and other components, combined with the use of numerical Laplace transforms. The application of a frequency domain method is aimed at the accurate and straightforward computation of transient system responses while preserving the wideband frequency characteristics of power components, such as those due to the use of high frequency semiconductive switches, electromagnetic interaction between inductive and capacitive components, as well as wave propagation and frequency dependence in transmission systems.
Densely deployment of sensors is generally employed in wireless sensor networks (WSNs) to ensure energy-efficient covering of a target area. Many sensors scheduling techniques have been recently proposed for designing such energy-efficient WSNs. Sensors scheduling has been modeled, in the literature, as a generalization of minimum set covering problem (MSCP) problem. MSCP is a well-known NP-hard optimization problem used to model a large range of problems arising from scheduling, manufacturing, service planning, information retrieval, etc. In this paper, the MSCP is modeled to design an energy-efficient wireless sensor networks (WSNs) that can reliably cover a target area. Unlike other attempts in the literature, which consider only a si
... Show MoreIn recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the road in all the sections of the country. Vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the developing system is consist of three phases, vehicle license plate localization, character segmentation, and character recognition, the License Plate (LP) detection is presented using canny
... Show MoreThe cuneiform images need many processes in order to know their contents
and by using image enhancement to clarify the objects (symbols) founded in the
image. The Vector used for classifying the symbol called symbol structural vector
(SSV) it which is build from the information wedges in the symbol.
The experimental tests show insome numbersand various relevancy including
various drawings in online method. The results are high accuracy in this research,
and methods and algorithms programmed using a visual basic 6.0. In this research
more than one method was applied to extract information from the digital images
of cuneiform tablets, in order to identify most of signs of Sumerian cuneiform.
Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show More