One of the most interested problems that recently attracts many research investigations in Protein-protein interactions (PPI) networks is complex detection problem. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem wherein, recently, the field of Evolutionary Algorithms (EAs) reveals positive results. The contribution of this work is to introduce a heuristic operator, called protein-complex attraction and repulsion, which is especially tailored for the complex detection problem and to enable the EA to improve its detection ability. The proposed heuristic operator is designed to fine-grain the structure of a complex by dividing it into two more complexes, each being distinguished with a core protein. Then, it is possible for each of the remaining proteins associated with the original coarse-grained complex to repulse from one of the new generated complexes while attracted by the core protein of the second complex. The topology-based complex detection models presented in the literature are adopted to inter-play with the proposed heuristic operator inside the EA general framework. To assess the performance of the EA when coupled with the proposed heuristic operator, the well known Saccaromycaes Cerevisiae yeast PPI network and one reference set of benchmark complexes created from MIPS are used in the experiments. The results prove the positive impact of the heuristic operator to harness the strength of almost all adopted EA models.
Regarding the security of computer systems, the intrusion detection systems (IDSs) are essential components for the detection of attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in real time. A major drawback of the IDS is their inability to provide adequate sensitivity and accuracy, coupled with their failure in processing enormous data. The issue of classification time is greatly reduced with the IDS through feature selection. In this paper, a new feature selection algorithm based on Firefly Algorithm (FA) is proposed. In addition, the naïve bayesian classifier is used to discriminate attack behaviour from normal behaviour in the network tra
... Show MoreBackground: Asthma is an inflammatory airway disease; this inflammatory response can be attributed to reduced lymphocyte apoptosis in peripheral blood and in airway tissues.
The mechanism behind this could be attributed to decreased Bcl2 protein and increase Bax protein in peripheral blood lymphocytes of asthmatic patients.
Aim: to explore the mechanism behind decreased lymphocyte apoptosis in peripheral blood of asthmatic patients at cellular level.
Method: Ninety four subjects; (44) control and (50) patients were included in this study during the period from (2003) to (2004). The aspirated lymphocytes for each individual
were prepared and stained by immunocytochemistry to study the percentage of antiapop
Many people take protein supplements in an effort to gain muscle. However, there is some controversy as to whether this is really effective. There is evidence suggesting that consuming high level s of protein may in fact have negative side effects for health. The current study included 29 young Iraqi building muscles in two different groups (taken and not protein supplements) (age range=17-31 years), the cases were selected from family, friends, college students, and Gyms), from November 2014 to March 2015. A careful history was obtained from each volunteer including age, duration of sports, type of supplements, and family history of diseases. Some biochemical parameters like (glucose, urea, uric acid, creatinine, bilirubin, serum protei
... Show MoreIn this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of societie
... Show MoreSensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte
... Show MoreIn real world, almost all networks evolve over time. For example, in networks of friendships and acquaintances, people continually create and delete friendship relationship connections over time, thereby add and draw friends, and some people become part of new social networks or leave their networks, changing the nodes in the network. Recently, tracking communities encountering topological shifting drawn significant attentions and many successive algorithms have been proposed to model the problem. In general, evolutionary clustering can be defined as clustering data over time wherein two concepts: snapshot quality and temporal smoothness should be considered. Snapshot quality means that the clusters should be as precise as possible durin
... Show More