The reduction to pole of the aeromagnetic map of the western desert of Iraq has been used to outline the main basement structural features. Three selected magnetic anomalies are used to determine the depths of their magnetic sources. The estimated depths are obtained by using slope half slope method and have been corrected through the application of a published nomogram. These depths are compared with previous published depth values which provide a new look at the basement of the western desert in addition to the thickness map of the Paleozoic formations. The results shed light on the important of the great depths of the basement structures and in turn the sedimentary cover to be considered for future hydrocarbon exploration
Active Magnetic Bearings (AMBs) are progressively being implemented in a wide variety of applications. Their exclusive appealing features make them suitable for solving traditional rotor-bearing problems using novel design approaches for rotating machinery. In this paper, a linearized uncertain model of AMBs is utilized to develop a nonlinear sliding mode controller based on Lyapunov function for the electromechanical system. The controller requires measurements of the rotor displacements and their derivatives. Since the control law is discontinuous, the proposed controller can achieve a finite time regulation but with the drawback of the chattering problem. To reduce the effect of this problem, the gain of the uni
... Show MoreDesign sampling plan was and still one of most importance subjects because it give lowest cost comparing with others, time live statistical distribution should be known to give best estimators for parameters of sampling plan and get best sampling plan.
Research dell with design sampling plan when live time distribution follow Logistic distribution with () as location and shape parameters, using these information can help us getting (number of groups, sample size) associated with reject or accept the Lot
Experimental results for simulated data shows the least number of groups and sample size needs to reject or accept the Lot with certain probability of
... Show MoreIn the current digitalized world, cloud computing becomes a feasible solution for the virtualization of cloud computing resources. Though cloud computing has many advantages to outsourcing an organization’s information, but the strong security is the main aspect of cloud computing. Identity authentication theft becomes a vital part of the protection of cloud computing data. In this process, the intruders violate the security protocols and perform attacks on the organizations or user’s data. The situation of cloud data disclosure leads to the cloud user feeling insecure while using the cloud platform. The different traditional cryptographic techniques are not able to stop such kinds of attacks. BB84 protocol is the first quantum cry
... Show MoreReferral techniques are normally employed in internet business applications. Existing frameworks prescribe things to a particular client according to client inclinations and former high evaluations. Quite a number of methods, such as cooperative filtering and content-based methodologies, dominate the architectural design of referral frameworks. Many referral schemes are domain-specific and cannot be deployed in a general-purpose setting. This study proposes a two-dimensional (User × Item)-space multimode referral scheme, having an enormous client base but few articles on offer. Additionally, the design of the referral scheme is anchored on the and articles, as expressed by a particular client, and is a combination of affi
... Show MoreIn recent years, social media has been increasing widely and obviously as a media for users expressing their emotions and feelings through thousands of posts and comments related to tourism companies. As a consequence, it became difficult for tourists to read all the comments to determine whether these opinions are positive or negative to assess the success of a tourism company. In this paper, a modest model is proposed to assess e-tourism companies using Iraqi dialect reviews collected from Facebook. The reviews are analyzed using text mining techniques for sentiment classification. The generated sentiment words are classified into positive, negative and neutral comments by utilizing Rough Set Theory, Naïve Bayes and K-Nearest Neighbor
... Show MoreThis paper delves into some significant performance measures (PMs) of a bulk arrival queueing system with constant batch size b, according to arrival rates and service rates being fuzzy parameters. The bulk arrival queuing system deals with observation arrival into the queuing system as a constant group size before allowing individual customers entering to the service. This leads to obtaining a new tool with the aid of generating function methods. The corresponding traditional bulk queueing system model is more convenient under an uncertain environment. The α-cut approach is applied with the conventional Zadeh's extension principle (ZEP) to transform the triangular membership functions (Mem. Fs) fuzzy queues into a family of conventional b
... Show MoreThe increasing amount of educational data has rapidly in the latest few years. The Educational Data Mining (EDM) techniques are utilized to detect the valuable pattern so that improves the educational process and to obtain high performance of all educational elements. The proposed work contains three stages: preprocessing, features selection, and an active classification stage. The dataset was collected using EDM that had a lack in the label data, it contained 2050 records collected by using questionnaires and by using the students’ academic records. There are twenty-five features that were combined from the following five factors: (curriculum, teacher, student, the environment of education, and the family). Active learning ha
... Show MoreThis paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show MoreObjective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show MoreMachine learning-based techniques are used widely for the classification of images into various categories. The advancement of Convolutional Neural Network (CNN) affects the field of computer vision on a large scale. It has been applied to classify and localize objects in images. Among the fields of applications of CNN, it has been applied to understand huge unstructured astronomical data being collected every second. Galaxies have diverse and complex shapes and their morphology carries fundamental information about the whole universe. Studying these galaxies has been a tremendous task for the researchers around the world. Researchers have already applied some basic CNN models to predict the morphological classes
... Show More