This article presents a polynomial-based image compression scheme, which consists of using the color model (YUV) to represent color contents and using two-dimensional polynomial coding (first-order) with variable block size according to correlation between neighbor pixels. The residual part of the polynomial for all bands is analyzed into two parts, most important (big) part, and least important (small) parts. Due to the significant subjective importance of the big group; lossless compression (based on Run-Length spatial coding) is used to represent it. Furthermore, a lossy compression system scheme is utilized to approximately represent the small group; it is based on an error-limited adaptive coding system and using the transform coding scheme (discrete cosine transform or bi-orthogonal transform). Experimentally, the developed system has achieved high compression ratios with acceptable quality for color images. The performance results are comparable to those introduced in recent studies; the accomplishment of the introduced image compression system was analyzed and compared with the performance of the JPEG standard. The results of the developed system show better performance than that of the JPEG standard.
In this work, we introduce Fibonacci– Halpern iterative scheme ( FH scheme) in partial ordered Banach space (POB space) for monotone total asymptotically non-expansive mapping (, MTAN mapping) that defined on weakly compact convex subset. We also discuss the results of weak and strong convergence for this scheme.
Throughout this work, compactness condition of m-th iterate of the mapping for some natural m is necessary to ensure strong convergence, while Opial's condition has been employed to show weak convergence. Stability of FH scheme is also studied. A numerical comparison is provided by an example to show that FH scheme is faster than Mann and Halpern iterative
... Show MoreIn this paper, a simple fast lossless image compression method is introduced for compressing medical images, it is based on integrates multiresolution coding along with polynomial approximation of linear based to decompose image signal followed by efficient coding. The test results indicate that the suggested method can lead to promising performance due to flexibility in overcoming the limitations or restrictions of the model order length and extra overhead information required compared to traditional predictive coding techniques.
The problem of the high peak to average ratio (PAPR) in OFDM signals is investigated with a brief presentation of the various methods used to reduce the PAPR with special attention to the clipping method. An alternative approach of clipping is presented, where the clipping is performed right after the IFFT stage unlike the conventional clipping that is performed in the power amplifier stage, which causes undesirable out of signal band spectral growth. In the proposed method, there is clipping of samples not clipping of wave, therefore, the spectral distortion is avoided. Coding is required to correct the errors introduced by the clipping and the overall system is tested for two types of modulations, the QPSK as a constant amplitude modul
... Show MoreThis paper is used for solving component Volterra nonlinear systems by means of the combined Sumudu transform with Adomian decomposition process. We equate the numerical results with the exact solutions to demonstrate the high accuracy of the solution results. The results show that the approach is very straightforward and effective.
Electrocardiogram (ECG) is an important physiological signal for cardiac disease diagnosis. With the increasing use of modern electrocardiogram monitoring devices that generate vast amount of data requiring huge storage capacity. In order to decrease storage costs or make ECG signals suitable and ready for transmission through common communication channels, the ECG data
volume must be reduced. So an effective data compression method is required. This paper presents an efficient technique for the compression of ECG signals. In this technique, different transforms have been used to compress the ECG signals. At first, a 1-D ECG data was segmented and aligned to a 2-D data array, then 2-D mixed transform was implemented to compress the
Image compression is a serious issue in computer storage and transmission, that simply makes efficient use of redundancy embedded within an image itself; in addition, it may exploit human vision or perception limitations to reduce the imperceivable information Polynomial coding is a modern image compression technique based on modelling concept to remove the spatial redundancy embedded within the image effectively that composed of two parts, the mathematical model and the residual. In this paper, two stages proposed technqies adopted, that starts by utilizing the lossy predictor model along with multiresolution base and thresholding techniques corresponding to first stage. Latter by incorporating the near lossless com
... Show MoreThe traditional technique of generating MPSK signals is basically to use IQ modulator that involves analog processing like multiplication and addition where inaccuracies may exist and would lead to imbalance problems that affects the output modulated signal and hence the overall performance of the system. In this paper, a simple method is presented for generating the MPSK using logic circuits that basically generated M-carrier signals each carrier of different equally spaced phase shift. Then these carriers are time multiplexed, according to the data symbols, into the output modulated signal.
Nowadays, still images are used everywhere in the digital world. The shortages of storage capacity and transmission bandwidth make efficient compression solutions essential. A revolutionary mathematics tool, wavelet transform, has already shown its power in image processing. The major topic of this paper, is improve the compresses of still images by Multiwavelet based on estimation the high Multiwavelet coefficients in high frequencies sub band by interpolation instead of sending all Multiwavelet coefficients. When comparing the proposed approach with other compression methods Good result obtained