Preferred Language
Articles
/
ijs-6328
Nonoscillatory Properties of Fourth Order Nonlinear Neutral Differential equation

    In this paper, the oscillatory and nonoscillatory qualities for every solution of fourth-order neutral delay equation are discussed. Some conditions are established to ensure that all solutions are either oscillatory or approach to zero as .  Two examples are provided to demonstrate the obtained findings.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Oscillation Criteria for Solutions of Neutral Differential Equations of Impulses Effect with Positive and Negative Coefficients: eventually positive solutions and differential inequalities

In this paper, some necessary and sufficient conditions are obtained to ensure the oscillatory of all solutions of the first order impulsive neutral differential equations. Also, some results in the references have been improved and generalized. New lemmas are established to demonstrate the oscillation property. Special impulsive conditions associated with neutral differential equation are submitted. Some examples are given to illustrate the obtained results.

Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
Asymptotic Criteria of Neutral Differential Equations with Positive and Negative Coefficients and Impulsive Integral Term

In this paper, the asymptotic behavior of all solutions of impulsive neutral differential equations with positive and negative coefficients and with impulsive integral term was investigated. Some sufficient conditions were obtained to ensure that all nonoscillatory solutions converge to zero. Illustrative examples were given for the main results.

Scopus (4)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Feb 28 2019
Journal Name
Iraqi Journal Of Science
Approximation Solution of Nonlinear Parabolic Partial Differential Equation via Mixed Galerkin Finite Elements Method with the Crank-Nicolson Scheme

The approximate solution of a nonlinear parabolic boundary value problem with variable coefficients (NLPBVPVC) is found by using mixed Galekin finite element method (GFEM) in space variable with Crank Nicolson (C-N) scheme in time variable. The problem is reduced to solve a Galerkin nonlinear algebraic system (NLAS), which is solved by applying the predictor and the corrector method (PCM), which transforms the NLAS into a Galerkin linear algebraic system (LAS). This LAS is solved once using the Cholesky technique (CHT) as it appears in the MATLAB package and once again using the General Cholesky Reduction Order Technique (GCHROT), the GCHROT is employed here at first time to play an important role for saving a massive time. Illustrative

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 01 2009
Journal Name
The Third International Conference Of The College Of Science –university Of Baghdad
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Oscillation and Asymptotic Behavior of a Three-Dimensional Half-Linear System of Third-Order of Neutral Type

     In this paper, the oscillatory properties and asymptotic behaviour of a third-order three-dimensional neutral system are discussed.  Some sufficient conditions are obtained to ensure that all bounded positive solutions of the system are oscillatory or non-oscillatory.  On the other hand, the non-oscillatory solutions either converge or diverge when  goes to infinity. A special technique is adopted to include all possible cases. The obtained results include illustrative examples.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Stabilizability of Riccati Matrix Fractional Delay Differential Equation

In this article, the backstepping control scheme is proposed to stabilize the fractional order Riccati matrix differential equation with retarded arguments in which the fractional derivative is presented using Caputo's definition of fractional derivative. The results are established using Mittag-Leffler stability. The fractional Lyapunov function is defined at each stage and the negativity of an overall fractional Lyapunov function is ensured by the proper selection of the control law. Numerical simulation has been used to demonstrate the effectiveness of the proposed control scheme for stabilizing such type of Riccati matrix differential equations.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
International Journal Of Nonlinear Analysis And Applications
Two Efficient Methods For Solving Non-linear Fourth-Order PDEs

This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.

Scopus (9)
Scopus
Publication Date
Wed Jun 27 2018
Journal Name
Iraqi Journal Of Science
Generalized Spline Method for Integro-Differential Equations of Fractional Order

In This paper generalized spline method and Caputo differential operator is applied to solve linear fractional integro-differential equations of the second kind. Comparison of the applied method with exact solutions reveals that the method is tremendously effective.

View Publication Preview PDF
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Sumudu Iterative Method for solving Nonlinear Partial Differential Equations

       In this paper, we apply a new technique combined by a Sumudu transform and iterative method called the Sumudu iterative method for resolving non-linear partial differential equations to compute analytic solutions. The aim of this paper is to construct the efficacious frequent relation to resolve these problems. The suggested technique is tested on four problems. So the results of this study are debated to show how useful this method is in terms of being a powerful, accurate and fast tool with a little effort compared to other iterative methods.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Sun Aug 03 2014
Journal Name
Journal Of Advances In Mathematics