Preferred Language
Articles
/
ijs-6328
Nonoscillatory Properties of Fourth Order Nonlinear Neutral Differential equation

    In this paper, the oscillatory and nonoscillatory qualities for every solution of fourth-order neutral delay equation are discussed. Some conditions are established to ensure that all solutions are either oscillatory or approach to zero as .  Two examples are provided to demonstrate the obtained findings.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
The Continuous Classical Optimal Control of a Couple Nonlinear Hyperbolic Partial Differential Equations with Equality and Inequality Constraints

This paper is concerned with the existence of a unique state vector solution of a couple nonlinear hyperbolic equations using the Galerkin method when the continuous classical control vector is given, the existence theorem of a continuous classical optimal control vector with equality and inequality vector state constraints is proved, the existence of a unique solution of the adjoint equations associated with the state equations is studied. The Frcéhet derivative of the Hamiltonian is obtained. Finally the theorems of the necessary conditions and the sufficient conditions of optimality of the constrained problem are proved.

View Publication Preview PDF
Publication Date
Fri Mar 29 2024
Journal Name
Iraqi Journal Of Science
Determination of Timewise-Source Coefficient in Time-Fractional Reaction-Diffusion Equation from First Order Heat Moment

     This article aims to determine the time-dependent heat coefficient together with the temperature solution for a type of semi-linear time-fractional inverse source problem by applying a method based on the finite difference scheme and Tikhonov regularization. An unconditionally stable implicit finite difference scheme is used as a direct (forward) solver. While by the MATLAB routine lsqnonlin from the optimization toolbox, the inverse problem is reformulated as nonlinear least square minimization and solved efficiently. Since the problem is generally incorrect or ill-posed that means any error inclusion in the input data will produce a large error in the output data. Therefore, the Tikhonov regularization technique is applie

... Show More
Scopus Crossref
Preview PDF
Publication Date
Wed May 31 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Some Statistical Properties of Linear Volterra Integral Equation solutions

 Our aim of this research is to find the results of numerical solution of Volterra linear integral equation of the second kind using numerical methods such that Trapezoidal and Simpson's rule. That is to derive some statistical properties expected value, the variance and the correlation coefficient between the numerical and exact solutionâ–¡ 

View Publication Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Nonlinear Ritz Approximation for the Camassa-Holm Equation by Using the Modify Lyapunov-Schmidt method

 

          In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two.  The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.

Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Aug 31 2023
Journal Name
Journal Of Kufa For Mathematics And Computer
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Computational methods for solving nonlinear ordinary differential equations arising in engineering and applied sciences

In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between t

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed May 13 2020
Journal Name
Nonlinear Engineering
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To ill</p> ... Show More
Crossref (10)
Crossref
View Publication
Publication Date
Wed May 13 2020
Journal Name
Nonlinear Engineering
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To ill</p> ... Show More
Scopus (13)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
some properties of the nonscillatory solutions of second order

in this paper the second order neutral differential equations are incestigated are were we give some new suffucient conditions for all nonoscillatory

View Publication Preview PDF
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using of Third and Fourth Order Derivative Spectra to Simultaneous Determination of Olanzapine and Ephedrine in Its Pure and Pharmaceutical Formulations

 Two new simultaneous spectrophotometric methods for determination of Olanzapine and Ephedrine depend on third (D3) and fourth (D4) derivative of zero spectrum of two drugs were developed. The peak – to- base line, peak to peak and area under peak were found proportional with concentration of the drugs up to (4-24 µg/ml-1) at known experimental wavelengths. The results showed that the method was precise and accurate through  RSD% (0.5026-4.0273),( 0.2399 6.9888) and  R.E %(-2.3889-0.8333) ,) -2.9444-0.2273) while the LOD (0.0057-  0.8510 μg.ml-1), ( 0.0953-0.9844 μg.ml-1) and LOQ (0.0173- 2.5788μg.ml-1),( 0.5774-2.9829 μg.ml-1) were found for the two drugs respectively. The methods were applied i

... Show More
Crossref
View Publication Preview PDF