In this work, a pollution-sensitive Photonic Crystal Fiber (PCF) based on Surface Plasmon Resonance (SPR) technology is designed and implemented for sensing refractive indices and concentrations of polluted water . The overall construction of the sensor is achieved by splicing short lengths of PCF (ESM-12) solid core on one side with traditional multimode fiber (MMF) and depositing a gold nanofilm of 50nm thickness on the end of the PCF sensor. The PCF- SPR experiment was carried out with various samples of polluted water including(distilled water, draining water, dirty pond water, chemical water, salty water and oiled water). The location of the resonant wavelength peaks is seen to move to longer wavelengths (red shift) as the refractive index increases due to the transfer of maximum energy from the reflected power of the light guided through the fiber to the surface plasmons. The experimental results show that the highest sensitivity reached 4202.6nm/RIU for oiled water, the signal to noise ratio was 0.625, the resolution was 2.4*10-5 RIU, and the figure of merit was 22.8. The prepared sensor exhibited excellent performance features, making it an excellent element for detecting water pollutants.
Thin films of tin sulfide (SnS) were prepared by thermal evaporation technique on glass substrates, with thickness in the range of 100, 200 and 300nm and their physical properties were studied with appropriate techniques. The phase of the synthesized thin films was confirmed by X-ray diffraction analysis. Further, the crystallite size was calculated by Scherer formula and found to increase from 58 to 79 nm with increase of thickness. The obtained results were discussed in view of testing the suitability of SnS film as an absorber for the fabrication of low-cost and non toxic solar cell. For thickness, t=300nm, the films showed orthorhombic OR phase with a strong (111) preferred orientation. The films deposited with thickness < 200nm deviate
... Show MoreIn this study, nanocomposites have been prepared by adding
multiwall carbon nanotubes (MWCNTs) with weight ratios (0, 2, 3,
4, 5) wt% to epoxy resin. The samples were prepared by hand lay-up
method. Influence of an applied load before and after immersion in
sodium hydroxide (NaOH) of normality (0.3N) for (15 days) at
laboratory temperature on wear rate of Ep/MWCNTs
nanocomposites was studied. The results showed that wear rate
increases with increasing the applied load for the as prepared and
immersed samples and after immersion. It was also found that epoxy
resin reinforced with MWCNTs has wear rate less than neat epoxy.
The sample (Ep + 5wt% of MWCNTs) has lower wear rate. The
immersion effect in base so
The research aims to develop and build a plasma jet system operating under atmospheric pressure.for biological purposes. The advanced plasma system consists of a power supply and a plasma torch. The source of the development of the system is a previous laboratory system that was developed by changing the voltage and frequency of the power supply, as the power provider equips the system with a voltage in the form of a sine wave whose value is fixed at about (7.5kV) peak to peak and its frequency is about (28 kHz). The plasma torch consists of a teflon tube with of width of (10 m ) located at (10mm) from the end of the tube. The current waveform and voltage wave were measured using a current and voltage sensor and an oscilloscop
... Show MoreThin films whose compositions can be expressed by (GeS2)100-xGax (x=0, 6,12,18) formula were obtained by thermal evaporation technique of bulk material at a base pressure of ~10-5 torr. Optical transmission spectra of the films were taken in the range of 300-1100 nm then the optical band gap, tail width of localized states, refractive index, extinction coefficient were calculated. The optical constants were found to increase at low concentration of Ga (0 to12%) while they decreases with further addition of Ga. The optical band gap was found to change in opposite manner to that of optical constants. The variation in the optical parameters are explained in terms of average bond energy
... Show MoreThe goal of this investigation is to prepare zinc oxide (ZnO) nano-thin films by pulsed laser deposition (PLD) technique through Q-switching double frequency Nd:YAG laser (532 nm) wavelength, pulse frequency 6 Hz, and 300 mJ energy under vacuum conditions (10-3 torr) at room temperature. (ZnO) nano-thin films were deposited on glass substrates with different thickness of 300, 600 and 900 nm. ZnO films, were then annealed in air at a temperature of 500 °C for one hour. The results were compared with the researchers' previous theoretical study. The XRD analysis of ZnO nano-thin films indicated a hexagonal multi-crystalline wurtzite structure with preferential growth lines (100), (002), (101) for ZnO nano-thin films with differe
... Show MoreIn this paper, the productions of gallium oxide (Ga2O3) nanoparticles were achieved via using the Nd: YAG laser deposition method with a fundamental wavelength (1064 nm). These nanoparticles were characterized by using different methods such as X-ray diffractometer (XRD), atomic force microscopy (AFM) and Ultraviolet–visible (UV–vis) spectroscopy. To examine the effects of laser energy on the properties of nanoparticles, the experimental results and theoretical considerations were prepared by the effective method of pulse laser deposition. The synthesis of Ga2O3NPs) was achieved with different ranges of energies (500 to 900 mJ). Average crystallite sizes of the synthesized nanopar
... Show MoreIn this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 prot
... Show MoreA computational investigation is carried out in the field of charged particle optics with the aid of the numerical analysis methods. The work is concerned with the design of symmetrical double pole piece magnetic lens. The axial magnetic flux density distribution is determined by using exponential model, from which the paraxial-ray equation is solved to obtain the trajectory of particles that satisfy the suggested exponential model. From the knowledge of the first and second derivatives of axial potential distribution, the optical properties such as the focal length and aberration coefficients (radial distortion coefficient and spiral distortion coefficient) are determined. Finally, the pole piece profiles capable of pr
... Show MoreThis paper presents on the design of L-Band Multiwavelength laser for Hybrid Time Division Multiplexing/ Wavelength Division Multiplexing (TDM/WDM) Passive Optical Network (PON) application. In this design, an L-band Mulltiwavelength Laser is designed as the downstream signals for TDM/WDM PON. The downstream signals ranging from 1569.865 nm to 1581.973 nm with 100GHz spacing. The multiwavelength laser is designed using OptiSystem software and it is integrated into a TDM/WDM PON that is also designed using OptiSystem simulation software. By adapting multiwavelength fiber laser into a TDM/WDM network, a simple and low-cost downstream signal is proposed. From the simulation design, it is found that the proposed design is suitable to be used
... Show MoreThis paper defines a method for sputtering high strength, extremely conductive silver mirrors on glass substrates at temperatures ranging from 20o to 22o C. The silver coated layer thicknesses in this work ranges from 7.5 to 16.1 nm using sputtering time from 10 to 30 min at power 25 W, 13.7 to 29.2 nm for time 10 to 30 min at 50 W, 15.7 to 26.4 nm for time 10 to 30 min at 75 W and 13.8 to 31.1 nm for time 10 to 30 min at 100 W. The optimum values of pressure and electrode gape for plasma sputtering system are 0.1 mbar and 5 cm respectively. The effect of DC sputtering power, sputtering duration or (sputtering time), and thickness on optical properties was investigated using an ultraviolet-visible spectrophot
... Show More