In this paper a mathematical model that analytically as well as numerically
the flow of infection disease in a population is proposed and studied. It is
assumed that the disease divided the population into five classes: immature
susceptible individuals (S1) , mature individuals (S2 ) , infectious individual
(I ), removal individuals (R) and vaccine population (V) . The existence,
uniqueness and boundedness of the solution of the model are discussed. The
local and global stability of the model is studied. Finally the global dynamics of
the proposed model is studied numerically.