Preferred Language
Articles
/
ijs-6279
Global Stability of an epidemic model with vaccine involving stage structure
...Show More Authors

In this paper a mathematical model that analytically as well as numerically
the flow of infection disease in a population is proposed and studied. It is
assumed that the disease divided the population into five classes: immature
susceptible individuals (S1) , mature individuals (S2 ) , infectious individual
(I ), removal individuals (R) and vaccine population (V) . The existence,
uniqueness and boundedness of the solution of the model are discussed. The
local and global stability of the model is studied. Finally the global dynamics of
the proposed model is studied numerically.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Dynamical Study of An SIR Epidemic Model With Nonlinear Incidence Rate and Regress of Treatment
...Show More Authors

   In this research, dynamical study of an SIR epidemical model with nonlinear direct incidence rate (Beddington-De Angelis ) type, and regress of treatment investigated .An  analytical study  to the model shows that there are two equilibrium points appear, the discussed successfully with sufficient condition, the existence of local bifurcation and Hopf bifurcation was analyzed, finally numerical simulations are done to explain the analytic studies.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
A Reliable Iterative Transform Method for Solving an Epidemic Model
...Show More Authors

    The main purpose of the work is to apply a new method, so-called LTAM, which couples the Tamimi and Ansari iterative method (TAM) with the Laplace transform (LT). This method involves solving a problem of non-fatal disease spread in a society that is assumed to have a fixed size during the epidemic period. We apply the method to give an approximate analytic solution to the nonlinear system of the intended model. Moreover, the absolute error resulting from the numerical solutions and the ten iterations of LTAM approximations of the epidemic model, along with the maximum error remainder, were calculated by using MATHEMATICA® 11.3 program to illustrate the effectiveness of the method.

View Publication Preview PDF
Scopus (7)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
THE DYNAMICS OF A STAGE-STRUCTURE PREY-PREDATOR MODEL WITH HUNTING COOPERATION AND ANTI-PREDATOR BEHAVIOR
...Show More Authors

The mathematical construction of an ecological model with a prey-predator relationship was done. It presumed that the prey consisted of a stage structure of juveniles and adults. While the adult prey species had the power to fight off the predator, the predator, and juvenile prey worked together to hunt them. Additionally, the effect of the harvest was considered on the prey. All the solution’s properties were discussed. All potential equilibrium points' local stability was tested. The prerequisites for persistence were established. Global stability was investigated using Lyapunov methods. It was found that the system underwent a saddle-node bifurcation near the coexistence equilibrium point while exhibiting a transcritical bifurcation

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Fri Jun 23 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
The dynamic of an eco-epidemiological model involving fear and hunting cooperation
...Show More Authors

In the present paper, an eco-epidemiological model consisting of diseased prey consumed by a predator with fear cost, and hunting cooperation property is formulated and studied. It is assumed that the predator doesn’t distinguish between the healthy prey and sick prey and hence it consumed both. The solution’s properties such as existence, uniqueness, positivity, and bounded are discussed. The existence and stability conditions of all possible equilibrium points are studied. The persistence requirements of the proposed system are established. The bifurcation analysis near the non-hyperbolic equilibrium points is investigated. Numerically, some simulations are carried out to validate the main findings and obtain the critical values of th

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Clarivate Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Chaos, Solitons & Fractals
Modeling and analysis of an SI1I2R epidemic model with nonlinear incidence and general recovery functions of I1
...Show More Authors

In this paper, we established a mathematical model of an SI1I2R epidemic disease with saturated incidence and general recovery functions of the first disease I1. Considering the basic reproduction number, we obtained conditions for both disease-free and co-existing cases. The equilibrium points local stability is verified by using the Routh-Hurwitz criterion, while for the global stability, we used a suitable Lyapunov function to analyze the endemic spread of the positive equilibrium point. Moreover, we carried out the local bifurcation around both equilibrium points (disease-free and co-existing), where we obtained that the disease-free equilibrium point undergoes a transcritical bifurcation. We conduct numerical simulations that suppo

... Show More
View Publication
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
The Local Bifurcation of an Eco-Epidemiological Model in the Presence of Stage- Structured with Refuge
...Show More Authors

In this paper, we establish the conditions of the occurrence of the local bifurcations, such as saddle node, transcritical and pitchfork, of all equilibrium points of an eco-epidemiological model consisting of a prey-predator model with SI (susceptible-infected) epidemic diseases in prey population only and a refuge-stage structure in the predators. It is observed that there is a transcritical bifurcation near the axial and free predator equilibrium points, near disease-free equilibrium point is a saddle-node bifurcation and near positive (coexistence) equilibrium point is a saddle-node bifurcation, a transcritical bifurcation and a pitchfork bifurcation. Further investigations for Hopf bifurcation near coexistence equilibrium point are

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Deep Learning-based Predictive Model of mRNA Vaccine Deterioration: An Analysis of the Stanford COVID-19 mRNA Vaccine Dataset
...Show More Authors

The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
The Dynamics and Analysis of Stage-Structured Predator-Prey Model Involving Disease and Refuge in Prey Population
...Show More Authors
Abstract<p>Start your abstract here the objective of this paper is to study the dynamical behaviour of an eco-epidemiological system. A prey-predator model involving infectious disease with refuge for prey population only, the (SI_) infectious disease is transmitted directly, within the prey species from external sources of the environment as well as, through direct contact between susceptible and infected individuals. Linear type of incidence rate is used to describe the transmission of infectious disease. While Holling type II of functional responses are adopted to describe the predation process of the susceptible and infected predator respectively. This model is represented mathematically by </p> ... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
1st Samarra International Conference For Pure And Applied Sciences (sicps2021): Sicps2021
The persistence and bifurcation analysis of an ecological model with fear effect involving prey refuge and harvesting
...Show More Authors

View Publication
Crossref
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Modeling and Stability Analysis of an Eco-epidemiological Model
...Show More Authors

In this paper,a prey-predator model with infectious disease in predator population
is proposed and studied. Nonlinear incidence rate is used to describe the transition of
disease. The existence, uniqueness and boundedness of the solution are discussed.
The existences and the stability analysis of all possible equilibrium points are
studied. Numerical simulation is carried out to investigate the global dynamical
behavior of the system.

View Publication Preview PDF