Segmentation of real world images considered as one of the most challenging tasks in the computer vision field due to several issues that associated with this kind of images such as high interference between object foreground and background, complicated objects and the pixels intensities of the object and background are almost similar in some cases. This research has introduced a modified adaptive segmentation process with image contrast stretching namely Gamma Stretching to improve the segmentation problem. The iterative segmentation process based on the proposed criteria has given the flexibility to the segmentation process in finding the suitable region of interest. As well as, the using of Gamma stretching will help in separating the pixels of the objects and background through making the dark intensity pixels darker and the light intensity pixels lighter. The first 20 classes of Caltech 101 dataset have been utilized to demonstrate the performance of the proposed segmentation approach. Also, the Saliency Cut method has been adopted as a benchmark segmentation method. In summary, the proposed method improved some of the segmentation problems and outperforms the current segmentation method namely Saliency Cut method with segmentation accuracy 77.368%, as well as it can be used as a very useful step in improving the performance of visual object categorization system because the region of interest is mostly available.
Most of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B
... Show MoreThe combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.
In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.
&n
... Show MoreAlzheimer’s Disease (AD) is the most prevailing type of dementia. The prevalence of AD is estimated to be around 5% after 65 years old and is staggering 30% for more than 85 years old in developed countries. AD destroys brain cells causing people to lose their memory, mental functions and ability to continue daily activities. The findings of this study are likely to aid specialists in their decision-making process by using patients’ Magnetic Resonance Imaging (MRI) to distinguish patients with AD from Normal Control (NC). Performance evolution was applied to 346 Magnetic Resonance images from the Alzheimer's Neuroimaging Initiative (ADNI) collection. The Deep Belief Network (DBN) classifier was used to fulfill classification f
... Show MoreIn data transmission a change in single bit in the received data may lead to miss understanding or a disaster. Each bit in the sent information has high priority especially with information such as the address of the receiver. The importance of error detection with each single change is a key issue in data transmission field.
The ordinary single parity detection method can detect odd number of errors efficiently, but fails with even number of errors. Other detection methods such as two-dimensional and checksum showed better results and failed to cope with the increasing number of errors.
Two novel methods were suggested to detect the binary bit change errors when transmitting data in a noisy media.Those methods were: 2D-Checksum me
The research seeks to identify the comprehensive electronic banking system and the role of the auditor in light of the customer's application of electronic systems that depend on the Internet in providing its services, as a proposed audit program has been prepared in accordance with international auditing controls and standards based on the study of the customer's environment and the analysis of external and internal risks in the light of financial and non-financial indicators, the research reached a set of conclusions, most notably, increasing the dependence of banks on the comprehensive banking system for its ability to provide new and diverse banking services, The researcher suggested several recommendations, the most important of whi
... Show MoreMR Younus, Nasaq Journal, 2022
Graphene (Gr) decorated with silver nanoparticles (Ag NPs) were used to fabricate a wideband range photodetector. Silicon (Si) and porous silicon (PS) were used as a substrate to deposit Gr /Ag NPs by drop-casting technique. Silver nanoparticles (Ag NPs) were prepared using the chemical method. As well as the dispersion of silver NPs is achieved by a simple chemistry process on the surface of Gr.
The optical, structure and electrical characteristics of AgNPs and Gr decorated with Ag NPs were characterized by ultraviolet-visible spectroscopy (UV-Vis), x-ray diffraction (XRD). The X-ray diffraction (XRD) spectrum of Ag NPs exhibited 2θ values (38.1o, 44.3 o, 64.5 o and 77.7
... Show MoreDocument analysis of images snapped by camera is a growing challenge. These photos are often poor-quality compound images, composed of various objects and text; this makes automatic analysis complicated. OCR is one of the image processing techniques which is used to perform automatic identification of texts. Existing image processing techniques need to manage many parameters in order to clearly recognize the text in such pictures. Segmentation is regarded one of these essential parameters. This paper discusses the accuracy of segmentation process and its effect over the recognition process. According to the proposed method, the images were firstly filtered using the wiener filter then the active contour algorithm could b
... Show MoreInterleukin-38 (IL-38), an inflammatory cytokine discovered in recent years, has been implicated in the pathogenesis of systemic lupus erythematosus (SLE). IL-38 is encoded by the