Nowadays, 3D content is becoming an essential part of multimedia applications, when the 3D content is not protected, hackers may attack and steal it. This paper introduces a proposed scheme that provides high protection for 3D content by implementing multiple levels of security with preserving the original size using weight factor (w). First level of security is implemented by encrypting the texture map based on a 2D Logistic chaotic map. Second level is implemented by shuffling vertices (confusion) based on a 1D Tent chaotic map. Third level is implemented by modifying the vertices values (diffusion) based on a 3D Lorenz chaotic map. Results illustrate that the proposed scheme is completely deform the entire 3D content according to Hausdorff Distance (HD) approximately around 100 after the encryption process. It provides a high security against brute force attack because it has large key space equal to 10165 and secret key sensitivity using NPCR near 99:6% and UACI near 33:4%. The histogram and HD indicate the decrypted 3D content is identical to the origin where HD values approximate zero.
Throughout this paper, a generic iteration algorithm for a finite family of total asymptotically quasi-nonexpansive maps in uniformly convex Banach space is suggested. As well as weak / strong convergence theorems of this algorithm to a common fixed point are established. Finally, illustrative numerical example by using Matlab is presented.
Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show MoreThis study deals with the interpretation of structural 3D seismic reflection of the Kumait oil field in southern Iraq within the administrative boundaries of the Maysan Governorate. Synthetic seismograms are prepared by using available data of the Kt-1 oil field by using Petrel software to define and pick the reflector on the seismic section of the Zubair Formation, Which represents the Cretaceous Age. The study shows that the Kumait structure is an anticline fold. It is thought to be a structure trap caused by the collision of the Arabian and Iranian plates and trending in the same direction as driving factors in the area, which are from the northwest to the southeast, and the overall trend of strata is north and northeast. Sei
... Show MoreThe security of multimedia data becoming important spatial data of monitoring systems that contain videos prone to attack or escape via the internet, so to protect these videos used proposed method combined between encryption algorithm and sign algorithm to get on authenticated video. The proposed encryption algorithm applied to secure the video transmission by encrypt it to become unclear. This done by extract video to frames and each frame separate to three frames are Red, Green, and Blue, this frames encrypt by using three different random keys that generated by a function for generating random numbers, as for sign algorithm applied for authentication purpose that enable the receiver from sure of the identity of the sender and provide
... Show MoreCryptography algorithms play a critical role in information technology against various attacks witnessed in the digital era. Many studies and algorithms are done to achieve security issues for information systems. The high complexity of computational operations characterizes the traditional cryptography algorithms. On the other hand, lightweight algorithms are the way to solve most of the security issues that encounter applying traditional cryptography in constrained devices. However, a symmetric cipher is widely applied for ensuring the security of data communication in constraint devices. In this study, we proposed a hybrid algorithm based on two cryptography algorithms PRESENT and Salsa20. Also, a 2D logistic map of a chaotic system is a
... Show MoreThe present study aimed to identify the extent to which the content of social and national studies courses was included in interactive thinking maps in the educational stages in the Kingdom of Saudi Arabia, and to achieve the goal of the study, the researcher used the descriptive and analytical approach, and the study tool used consisted of a content analysis card; Where it included a list of the types of thinking maps, where the study sample consisted of all social and national studies courses at the elementary and intermediate levels, and it is (12) books for the student in its first and second parts, and after verifying the validity and reliability of the tool, it was applied to the study sample, and the study reached conclusions, inc
... Show MoreIn this work, a simple and new method is proposed to simultaneously improve the physical layer security and the transmission performance of the optical orthogonal frequency division multiplexing system, by combining orthogonal frequency division multiplexing technique with chaotic theory principles. In the system, a 2-D chaotic map is employed. The introduced system replaces complex operations such as matrix multiplication with simple operations such as multiplexing and inverting. The system performance in terms of bit error rate (BER) and peak to average ratio (PAPR) is enhanced. The system is simulated using Optisystem15 with a MATLAB2016 and for different constellations. The simulation results showed that the BE
... Show MoreTau-P linear noise attenuation filter (TPLNA) was applied on the 3D seismic data of Al-Samawah area south west of Iraq with the aim of attenuating linear noise. TPLNA transforms the data from time domain to tau-p domain in order to increase signal to noise ratio. Applying TPLNA produced very good results considering the 3D data that usually have a large amount of linear noise from different sources and in different azimuths and directions. This processing is very important in later interpretation due to the fact that the signal was covered by different kinds of noise in which the linear noise take a large part.