The ground state charge, proton and matter densities and their rms radii of some Te-isotopes are studied by means of the Skyrme–Hartree–Fock (SHF) method with the Skyrme parameters namely; SKB, SGI, SKM, SKX, MSK7 and SLy4. Also, the neutron skin thickness, the elastic charge form factor and the binding energy per nucleon are calculated in the same framework. The calculated results have been compared with the available experimental data.
PACS Nos.: 21.10.Ft, 25.30.Bf
Inelastic electron scattering have been studied for (3.68 )
2
1
2
3
MeV
,
(7.55 )
2
1
2
5
MeV
(15.11 )
2
3
2
3
MeV
states in the 13C nucleus. 4He is considered as an inert core with
nine nucleons out of it (the model space of nucleus). Form factors are calculated by
using Cohen-Kurath interaction for 1p-shell model space with Modified Surface
Delta Interaction (MSDI) as a residual interaction for higher configuration. The
study of core-polarization effects on the form factors is based on microscopic
theory, which combines shell model wave functions and configurations with higher
energy as the first order perturbation. The radial wave functions
In this paper, inelastic longitudinal electron scattering form factors C2 and C4
transitions have been studied in Ti 48,50
and Cr 52,54
nuclei with the aid of shell
model calculations. The core polarization transition density was evaluated by
adopting the shape of Tassie model togther with the derived form of the ground state
two-body charge density distributions (2BCDD's). The following transitions have
been investigated; 0 2 2 2 1 1
and 0 2 4 2 1 1
of Ti 48 , 0 3 2 3 1 1
and
0 3 4 3 1 1
of Ti 50 , 0 2 2 2 1 1
and 0 2 4 2 1 1
of Cr 52 and
0 3 2 3 1 1
and 0 3 4 3 1 1
of Cr 54 nuclei. It is fou
A study carried out to prepare Hg1-xCdxTe compound and to see the effect on increasing the percentage of x on the compound structure by using x-ray diffraction and atomic absorption for 0
Electronic Alattarh been studied long flexible factors forming the nucleus of boron in the shell model framework multipolar been identified factors was introduced into the effects of polarization heart in the first place accounts
A spherical-statistical optical model (SOM) has been used to calculate and evaluate the neutron interaction with medium nuclei (40 ). Empirical formulae of the optical potentials parameters are predicted with minimize accuracy compared with experimental bench work data. With these optical formulae an evaluation of the shape and compound elastic scattering cross-section of interaction neutrons with 56Fe nuclei at different energy range (1-20) MeV has been calculated and compared with experimental results. Also, volume integrals for real and imaginary potential energies have been evaluated and matched with the standard ABAREX code. Good agreements with have been achieved with the available experimental data.
Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing
... Show More The result of concentration varying of mixture methane with argon and neon gas are believed to study the change in electrons energy distribution function and then the change of the electrons transport parameters including the drift velocity, the mean energy, characteristics energy and diffusion coefficient. In the present work,a contemporary developed computer, simulation program known as Bolsig+ is being used for calculating the electron transport parameters.