Evolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust EA with more biological consistency. For this purpose, a new crossover operator is suggested where biological information in terms of both gene semantic similarity and protein functional similarity is fed into its design. To reflect the heuristic roles of both semantic and functional similarities, this paper introduces two gene ontology (GO) aware crossover operators. These are direct annotation-aware and inherited annotation-aware crossover operators. The first strategy is handled with the direct gene ontology annotation of the proteins, while the second strategy is handled with the directed acyclic graph (DAG) of each gene ontology term in the gene product. To conduct our experiments, the proposed EAs with GO-aware crossover operators are compared against the state-of-the-art heuristic, canonical EAs with the traditional crossover operator, and GO-based EAs. Simulation results are evaluated in terms of recall, precision, and F measure at both complex level and protein level. The results prove that the new EA design encourages a more reliable treatment of exploration and exploitation and, thus, improves the detection ability for more accurate protein complex structures.
In this paper, a differential operator is used to generate a subclass of analytic and univalent functions with positive coefficients. The studied class of the functions includes:
which is defined in the open unit disk satisfying the following condition
This leads to the study of properties such as coefficient bounds, Hadamard product, radius of close –to- convexity, inclusive properties, and (n, τ) –neighborhoods for functions belonging to our class.
Breast cancer becomes a major threat to female health, many reports refer to a high incidence of breast cancer in Iraq; especially, in the last years. The micro RNA-370 molecules have not been reported in Iraqi cancer patients. Our objective in this study was to identify the expression of micro RNA-370 molecules in breast cancer patients as an early detection biomarker of breast tumors and detect its relation with clinicopathological characters of breast cancer patients. Fifty fresh tissue samples were collected from benign and malignant breast patients in addition to ten normal tissue samples collected as a control group, the age ranged was(19 - 77) years for patients. The miR-370 gene expression level was measured by the quantitative r
... Show MoreBlood samples of One hundred and twenty patients from different hospitals in Baghdad infected with hydatidosis in different sites of the body (Liver, Lung, multiorgans and kidney) were collected for this study. On the other hand, 30 healthy individuals were included as a control group. This study was conducted to evaluate the effect of this disease on the serum protein profile of the patients using electrophoresis. The results revealed four different protein banding patterns with difference in number of bands and their molecular weights in comparison to the control group, and these differences depended on the site of infection. However the data showed a presence of the same band in all patients with different site of infection.
Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin
... Show MoreFuzzy numbers are used in various fields such as fuzzy process methods, decision control theory, problems involving decision making, and systematic reasoning. Fuzzy systems, including fuzzy set theory. In this paper, pentagonal fuzzy variables (PFV) are used to formulate linear programming problems (LPP). Here, we will concentrate on an approach to addressing these issues that uses the simplex technique (SM). Linear programming problems (LPP) and linear programming problems (LPP) with pentagonal fuzzy numbers (PFN) are the two basic categories into which we divide these issues. The focus of this paper is to find the optimal solution (OS) for LPP with PFN on the objective function (OF) and right-hand side. New ranking f
... Show MoreLung cancer, similar to other cancer types, results from genetic changes. However, it is considered as more threatening due to the spread of the smoking habit, a major risk factor of the disease. Scientists have been collecting and analyzing the biological data for a long time, in attempts to find methods to predict cancer before it occurs. Analysis of these data requires the use of artificial intelligence algorithms and neural network approaches. In this paper, one of the deep neural networks was used, that is the enhancer Deep Belief Network (DBN), which is constructed from two Restricted Boltzmann Machines (RBM). The visible nodes for the first RBM are 13 nodes and 8 nodes in each hidden layer for the two RBMs. The enhancer DBN was tr
... Show MoreThere is a great deal of systems dealing with image processing that are being used and developed on a daily basis. Those systems need the deployment of some basic operations such as detecting the Regions of Interest and matching those regions, in addition to the description of their properties. Those operations play a significant role in decision making which is necessary for the next operations depending on the assigned task. In order to accomplish those tasks, various algorithms have been introduced throughout years. One of the most popular algorithms is the Scale Invariant Feature Transform (SIFT). The efficiency of this algorithm is its performance in the process of detection and property description, and that is due to the fact that
... Show More