The most common artifacts in ultrasound (US) imaging are reverberation and comet-tail. These are multiple reflection echoing the interface that causing them, and result in ghost echoes in the ultrasound image. A method to reduce these unwanted artifacts using a Otsu thresholding to find region of interest (reflection echoes) and output applied to median filter to remove noise. The developed method significantly reduced the magnitude of the reverberation and comet-tail artifacts. Support Vector Machine (SVM) algorithm is most suitable for hyperplane differentiate. For that, we use image enhancement, extraction of feature, region of interest, Otsu thresholding, and finally classification image datasets to normal or abnormal image. Because of the machine’s training for both types of images, the machine can now predict whether a new image is an abnormal image or a normal image. As a result, it reduced medical work for many checkups and other things. Our proposed method shows the correct classification result by more than 89%.
Cuneiform symbols recognition represents a complicated task in pattern recognition and image analysis as a result of problems that related to cuneiform symbols like distortion and unwanted objects that associated with applying Binrizetion process like spots and writing lines. This paper aims to present new proposed algorithms to solve these problems for reaching uniform results about cuneiform symbols recognition that related to (select appropriate Binerized method, erased writing lines and spots) based on statistical Skewness measure, image morphology and distance transform concepts. The experiment results show that our proposed algorithms have excellent result and can be adopted
... Show More Today, the use of iris recognition is expanding globally as the most accurate and reliable biometric feature in terms of uniqueness and robustness. The motivation for the reduction or compression of the large databases of iris images becomes an urgent requirement. In general, image compression is the process to remove the insignificant or redundant information from the image details, that implicitly makes efficient use of redundancy embedded within the image itself. In addition, it may exploit human vision or perception limitations to reduce the imperceptible information.
This paper deals with reducing the size of image, namely reducing the number of bits required in representing the
Hiding technique for dynamic encryption text using encoding table and symmetric encryption method (AES algorithm) is presented in this paper. The encoding table is generated dynamically from MSB of the cover image points that used as the first phase of encryption. The Harris corner point algorithm is applied on cover image to generate the corner points which are used to generate dynamic AES key to second phase of text encryption. The embedded process in the LSB for the image pixels except the Harris corner points for more robust. Experimental results have demonstrated that the proposed scheme have embedding quality, error-free text recovery, and high value in PSNR.
When optimizing the performance of neural network-based chatbots, determining the optimizer is one of the most important aspects. Optimizers primarily control the adjustment of model parameters such as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM have become a standard choice and are widely used for their invariant parameter updates' magnitudes concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several advantages. This study aims to compare and examine the effects of these optimizers on the chatbot CST dataset. The effectiveness of each optimizer is evaluat
... Show MoreThe study is aimed at social support to the students of the College of Education for women (The research sample) and measuring the quality of life at students of the College of Education for women (The research sample) And to identify the relationship between social support and quality of life of students of the College Education for Women and research sample consisted of 200 students The adoption of the resolution as a tool for data collection and the most important results of the search results that the students of the College Education for Women have social support. In other words, parents and friends are supporting the students. The students have the quality of life any positive meaning to life and that when a person has a quality of
... Show MoreCoronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing
... Show MoreSemiconductor quantum dots (QDs) have attracted tremendous attentions for their unique characteristics for solid-state lighting and thin-film display applications. A simple chemical method was used to synthesis quantum dots (QDs) of zinc sulfide (ZnS) with low cost. The XRD) shows cubic phase of the prepared ZnS with an average particles size of (3-29) nm. In UV-Vis. spectra observed a large blue shift over 38 nm. The band gaps energy (Eg) was 3.8 eV and 3.37eV from the absorption and photoluminescence (PL) respectively which larger than the Eg for bulk. QDs-LED hybrid devices were fabricated using ITO/ PEDOT: PSS/ Poly-TPD/ ZnS-QDs/ with different electron transport layers and cathode of LiF/Al layers. The EL spectrum reveals a bro
... Show More