In this paper an improved weighted 0-1 knapsack method (WKM) is proposed to optimize the resource allocation process when the sum of items' weight exceeds the knapsack total capacity .The improved method depends on a modified weight for each item to ensure the allocation of the required resources for all the involved items. The results of the improved WKM are compared to the traditional 0-1 Knapsack Problem (KP). The proposed method dominates on the other one in term of the total optimal solution value of the knapsack .
The rise of edge-cloud continuum computing is a result of the growing significance of edge computing, which has become a complementary or substitute option for traditional cloud services. The convergence of networking and computers presents a notable challenge due to their distinct historical development. Task scheduling is a major challenge in the context of edge-cloud continuum computing. The selection of the execution location of tasks, is crucial in meeting the quality-of-service (QoS) requirements of applications. An efficient scheduling strategy for distributing workloads among virtual machines in the edge-cloud continuum data center is mandatory to ensure the fulfilment of QoS requirements for both customer and service provider. E
... Show MoreSince the COVID-19 pandemic alarm was made by the severe acute respiratory syndrome (SARS)-coronavirus (CoV) 2, several institutions and agencies have pursued to clarify the viral virulence and infectivity. The fast propagation of this virus leads to an unprecedented rise in the number of cases worldwide. COVID-19 virus is exceptionally contagious that spreads through droplets, respiratory secretions, and direct contact. The enveloped, single-stranded RNA virus has a specific envelop region called (S) region encoding (S protein) that specifically binds to the host cell receptor. Viral infection requires receptors' participation on the host cell membrane's surface, a key- step for the viral invasion of susceptible cells.
Rec
... Show MoreThe ligand 2-[1-(1H-indol-3-yl)ethylimino) methyl]naphthalene-1-ol, derived from 1-hydroxy-2-naphthaldehyde and 2-(1H-indol-3-yl)ethylamine, was used to produce a new sequence of metal ions complexes. Thus ligand reactions with NiCl2.6H2O, PdCl2, FeCl3.6H2O and H2PtCl6.6H2O were sequentially made to collect mono-nuclear Ni(II), Pd(II), Fe (III), and Pt(IV). (IR or FTIR), Ultraviolet Reflective (UV–visible), Mass Spectra analysis, Bohr-magnetic (B.M.), metal content, chloride content and molar conductivity have been the defining features of the composites. The Fe(III) and Pt(IV) complexes have octahedral geometries, while the Ni(II) complex has tetra
... Show MoreThe focus of this article is to add a new class of rank one of modified Quasi-Newton techniques to solve the problem of unconstrained optimization by updating the inverse Hessian matrix with an update of rank 1, where a diagonal matrix is the first component of the next inverse Hessian approximation, The inverse Hessian matrix is generated by the method proposed which is symmetric and it satisfies the condition of modified quasi-Newton, so the global convergence is retained. In addition, it is positive definite that guarantees the existence of the minimizer at every iteration of the objective function. We use the program MATLAB to solve an algorithm function to introduce the feasibility of
... Show MoreThis paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given. The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi
... Show MoreThe wavelets have many applications in engineering and the sciences, especially mathematics. Recently, in 2021, the wavelet Boubaker (WB) polynomials were used for the first time to study their properties and applications in detail. They were also utilized for solving the Lane-Emden equation. The aim of this paper is to show the truncated Wavelet Boubaker polynomials for solving variation problems. In this research, the direct method using wavelets Boubaker was presented for solving variational problems. The method reduces the problem into a set of linear algebraic equations. The fundamental idea of this method for solving variation problems is to convert the problem of a function into one that involves a finite number of variables. Diff
... Show MoreIn this study, carbon nanotubes were prepared using a pure chemical method modified similar to the Hummers method with simple changes in the work steps. The carbon nanotubes were then coated and reduced on copper and aluminum metals using the electrodeposition method (EDP) for corrosion protection application in seawater medium (NaCl 3.5%) at four different temperatures: 20, 30, 40, and 50 °C, which were studied using three electrode potentiostats. All corrosion measurements, thermodynamics, and kinetics parameters were nominated from Tafel plots. The films deposited by the carbon nanotubes were examined by the SEM technique, and this technique showed the formation of carbon nanotubes.
In this paper an attempt to provide a single degree of freedom lumped model for fluid structure interaction (FSI) dynamical analysis will be presented. The model can be used to clarify some important concept in the FSI dynamics such as the added mass, added stiffness, added damping, wave coupling ,influence mass coefficient and critical fluid depth . The numerical results of the model show that the natural frequency decrease with the increasing of many parameters related to the structure and the fluid .It is found that the interaction phenomena can become weak or strong depending on the depth of the containing fluid .The damped and un damped free response are plotted in time domain and phase plane for different model parameters It is fou
... Show MoreThis paper discusses reliability R of the (2+1) Cascade model of inverse Weibull distribution. Reliability is to be found when strength-stress distributed is inverse Weibull random variables with unknown scale parameter and known shape parameter. Six estimation methods (Maximum likelihood, Moment, Least Square, Weighted Least Square, Regression and Percentile) are used to estimate reliability. There is a comparison between six different estimation methods by the simulation study by MATLAB 2016, using two statistical criteria Mean square error and Mean Absolute Percentage Error, where it is found that best estimator between the six estimators is Maximum likelihood estimation method.