Baluti Formation of the Rhaetian (Late Triassic) age is composed mainly of dolomite, the unit formed with dolomitic limestone, dolomitic breccias and limestone begins with gray or dark gray colored and sugar textured dolomitic limestones including micrite with shale horizons. Baluti Formation was deposited in carbonate platform, and slumped to deeper margins forming carbonate debrites and breccias of various types.
Petrographic examination of the dolomites reveals various crystal habits and textures of the dolomites. Planktonic bivalve, calcisphere and echinoid spicules were found in the Baluti Formation settled in deep-margin carbonate environment. Nine dolomite-rock textures were identified and classified according to the crystal-size distribution and crystal-boundary shape. These are made of unimodal, 1) very fine to fine-crystalline planar-s (subhedral) mosaic dolomite; 2) unimodal, medium to coarse-crystalline planar-s (subhedral) mosaic dolomite; 3) coarse to very coarse crystalline planar-s (subhedral) dolomite; 4) medium to coarse-crystalline planar-e (euhedral) mosaic dolomite; 5) medium to coarse-crystalline planar-e (euhedral) dolomite; 6) coarse to very coarse-crystalline non-planar-a (anhedral) dolomite; 7) coarse to very coarse-crystalline non-planar-c (cement) dolomite; 8) polymodal, planar-s (subhedral) to planar-e (euhedral) mosaic dolomite. Dolomitization is closely associated with the development of secondary porosity; dolomitization pre and post diagenetic dissolution and corrosion and no secondary porosity generation is present in the associated limestones. The most common porosity types are non-fabric selective moldic and vugy porosity and intercrystalline porosity. These porous zones are characterized by late-diagenetic coarse-crystalline dolomite, whereas the non-porous intervals are composed of dense mosaics of early-diagenetic dolomites. The distribution of dolomite rock textures indicates that porous zones were preserved as limestone until late in the diagenetic history, and were then subjected to late-stage dolomitization in a medium burial environment, resulting in coarse-crystalline porous dolomites. Baluti dolomites have been formed as early diagenetic at the tidal-subtidal environment and as a late diagenetic at the shallow-deep burial depths.
Isotope tracer methods were used to determine flow paths, recharge areas, and relative age for groundwater in the Ameriyat Al- Falluja Al-Anbar governorate. The isotope of surface water and groundwater in the Ameriyat Al- Falluja area was assessed using a stable isotope technique. Data stable isotope parameters (2H and 18O) for three surface water and five groundwater samples were detected. The comparison of hydrogen and oxygen isotope compositions between groundwater and Euphrates River water demonstrated that the composition of the hydrogen and oxygen isotopes from Euphrates River matched that of the local meteoric water. This indicated that rainfall is the primary source of the river wate
... Show MorePetrophysical properties of Mishrif Formation at the Tuba field determined from interpretation of open log data of(Tu-2,3,4,5,6,12,24,and 25) wells. These properties include total (effected) and secondary porosity, as well as moveable and residual oil saturation into invaded and uninvaded zones. According to Petrophysical properties it is possible to divided Mishrif Formation into three reservoir units (RU1,2,and 3) separated by four cap rocks (Bar1,2,3,and 4) . Three-dimension reservoir model is established by used (Petrel, 2009) Software for each reservoir units. Result shows that the second and third reservoir units represent important reservoir units of Mishrif Formation. Thickness and reservoir properties enhanced toward middle and
... Show MoreA total of 23 samples are collected from Injana and Mukdadiya Formations representing: sandstone (14 samples from Injana Formation and 9 samples from Mukdadiya Formation). 19 sandstone samples are thin sectioned for petrographic study (10 thin sections from Injana and 9 thin sections from Mukdadiya) and 23 sandstone samples are selected for heavy minerals study (14 samples from Injana and 9 samples from Mukdadiya). The petrographic investigations revealed that the sandstone of Injana and Mukdadiya Formations are composed primarily of rock fragments (sedimentary, igneous and metamorphic), quartz (monocrystalline and polycrystalline) and feldspars (orthoclase, microcline and plagioclase). The matrix is subordinate and the cement is mostly
... Show MoreThe Hartha Formation reservoir was evaluated to be produced in the near future in Y oil and J fields, West of the Tigris River in northern Iraq. Due to geological data analysis of the Hartha facies and diagenesis could enhance oil production with minimized risks, this research tried to deal with data to support the oil production. The Hartha reservoir is subdivided into five-rock units, Har-1, 2, 3, 4 and 5. It is of Heterogenic facies limestone, dolomite, dolomitic limestone and argillaceous dolomite. The Hartha Formation is a clean carbonate; it has an effective porosity. It consists of lime mudstone-packstone skeletal grain. This conclusion is based on the lithology, core microfacies, cutting, thin section and log interpret
... Show MoreThe meteorite with a single total mass of 630 gm as a visible meteorite has fallen on 22 March 2021, at 10:00 a.m. in Al-Sherqat subdistrict within Salah Al-Din, northern Iraq; and therefore, was named Al-Sherqat meteorite by the authors. It is characterized by a uniform structure of coherent and medium degree of malleability. It is of a well-crystalline structure and not homogeneous in composition. The Al-Sherqat meteorite is composed of metallic phases of 7.6 gm/cm3 density exhibiting an oriented intergrowth of kamacite (α-FeNi) with taenite showing a Widmanstätten pattern on an etched polished section with the finest octahedrite kamacite bandwidth of less than 0.2 mm. It is composed of Fe (86.9 wt%), Ni (9.63 wt%), P (1.31 wt%)
... Show MoreThis paper aims to calculate the petrophysical properties in the Al-Ahdab field in the middle of Iraq within the Mauddud Formation. This study was based on the information available from well logs. The interactive petrophysical software IP (V4.5) was used to calculate the porosity, hydrocarbon saturation and shale volume, divide the formation into reservoir units and buffer units, and evaluate these units in each well. The Mauddud was divided into five units, two of them were considered good reservoirs having good petrophysical properties (high porosity, Low water saturation, and low shale volume). The other three are not reservoirs because of poor petrophysical properties.
Petrophysical properties of Mishrif Formation at Amara oil field is determined
from interpretation of open log data of (Am-1, 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12
and13) wells. These properties include the total, the effected and the secondary
porosity, as well as the moveable and the residual oil saturation in the invaded and
uninvaded zones. According to petrophysical properties it is possible to divided
Mishrif Formation which has thickness of a proximately 400 m, into seven main
reservoir units (MA, MB11, MB12, MB13, MB21, MC1, MC2) . MA is divided into
four secondary reservoir units , MB11 is divided into five secondary reservoir units ,
MB12 is divided into two secondary reservoir units , MB13 is divided into
The Dammam Formation in S and SW of Iraq is an Eocene carbonate succession consisting of limestone and dolostone. Two boreholes are selected in Al-Najaf and Al-Samawa area to investigate the biostratigraphy. The biostratigraphy of Dammam Formation consist of 22 species which belong to 13 genera of fossils foraminifera.
Two biozones were distinguished in Dammam Formation depending on benthonic foraminifera Nummulites. These biozones are; Nummulites gizehensis range zone and Alveolina sp. – Coskinolina sp. assemblage zone. According to thESE biozones the age of Dammam Formation represent Middle Eocene , whereas absent of these biozone represent Early and Late Eocene.