In this paper, a computer simulation is implemented to generate of an optical aberration by means of Zernike polynomials. Defocus, astigmatism, coma, and spherical Zernike aberrations were simulated in a subroutine using MATLAB function and applied as a phase error in the aperture function of an imaging system. The studying demonstrated that the Point Spread Function (PSF) and Modulation Transfer Function (MTF) have been affected by these optical aberrations. Areas under MTF for different radii of the aperture of imaging system have been computed to assess the quality and efficiency of optical imaging systems. Phase conjugation of these types aberration has been utilized in order to correct a distorted wavefront. The results showed that the largest effect on the PSF and MTF is due to the contribution of the third type coma aberrated wavefront.
CuInSe2(CIS) thin films have been prepared by use vacuum thermal evaporation technique, of thickness750 nm with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant) by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can make to control it are wide applications as an optoelectronic devices and photovoltaic applications.
The study effect irradiation on optical properties of film (PVA: CuCL2) prepared by casting method, with thickness of (30±1) μm. And used Cs137 to obtained Gamma ray with energy (662)keV and time irradiation(5,6 and 7) weeks and affectivity (4.3) ci. The spectra absorbance and transmittance register in range (300-1100) nm .
Results show that the optical band gap for (PVA: CuCl2) decreasing after irradiation with gamma ray from (3.2,3.1,3 and 2.7)eV, urbach energy values increase with the increasing time radiation. And the absorption constants (α,k,n,) and the optical conductivity are changing after irradiated with gamma ray .
In this work, Pure and Cu: doped titanium dioxide nano-powder was prepared through a solid-state method. the dopant concentration [Cu/TiO2 in atomic percentage (wt%)] is derived from 0 to 7 wt.%. structural properties of the samples performed with XRD revealed all nanopowders are of titanium dioxide having polycrystalline nature. Physical and Morphological studies were conducted using a scanning electronic microscope SEM test instrument to confirm the grain size and texture. The other properties of samples were examined using an optical microscope, Lee's Disc, Shore D hardness instrument, Fourier-transform infrared spectroscopy (FTIR), and Energy-dispersive X-ray spectroscopy (EDX). Results showed that the thermal conductivity
... Show MoreStudy was made on the optical properties of Ge2oSe8othinfilms prepared by vac-uum evaporation as radiated by (0,34,69) Gy of 13 ray.The optical band gab Eg and tailing band A.Et were studied in the photon energy range ( 1 to 3)eV. The a-Ge20Se8o film was found to be indirect gap with energy gap of (1.965,1.9 , 1.82) eV at radiated by B ray with absorption doses of (0,34,69)Gy respectively.The Ea and AEt of Ge20Se80 films showed adecrease in E8 and an increase in AEt with radiation. This be-havior may be related to structural defects and dangling bonds.
The structural, optical properties of cupper indium gallium selenite (CuIn1-xGaxSe) have been studied. CuIn1-xGaxSe thin films for x=0.6 have been prepared by thermal evaporation technique, of 2000±20 nm thickness, with rate of deposition 2±0.1 nm/sec, on glass substrate at room temperature. Heat treatment has been carried out in the range (373-773) K for 1 hour. It demonstrated from the XRD method that all the as-deposited and annealed films have polycrystalline structure of multiphase. The optical measurement of the CIGS thin films conformed that they have, direct allowed energy gap equal to 1.7 eV. The values of some important optical parameters of the studied films such as (absorption coefficient, refractive index, extinction coeffici
... Show MoreThe effect of thermal annealing on some structural and optical properties of ZnSe thin films was studied which prepared by thermal evaporation method with (550±20) nm thickness and annealing at (373,473)K for (2h), By using X-ray diffraction technique structural properties studied and showed that the films are crystalline nature and have ( cubic structure ) .From the observed results after heating treatment, We found that the annealing to perform decreases in grain size and increases in dislocation and observed the optical properties increase in absorption and decrease in transmission. From absorption spectra optical energy gap calculated about (2.66,2.68)eV which decreases value after heating treatment
The structural, optical properties of copper oxide thin films ( CuO) thin films which have been prepared by thermal oxidation with exist air once and oxygen another have been studied. Structural analysis results of Cu thin films demonstrate that the single phase of Cu with high a crystalline structure with a preferred orientation (111). X-ray diffraction results confirm the formation of pure (CuO) phase in both methods of preparation. The optical constant are investigated and calculated such as absorption coefficient, refractive index, extinction coefficient and the dielectric constants for the wavelengths in the range (300-1100) nm.
The aim of this paper is to compare between classical and fuzzy filters for removing different types of noise in gray scale images. The processing used consists of three steps. First, different types of noise are added to the original image to produce a noisy image (with different noise ratios). Second, classical and fuzzy filters are used to filter the noisy image. Finally, comparing between resulting images depending on a quantitative measure called Peak Signal-to-Noise Ratio (PSNR) to determine the best filter in each case.
The image used in this paper is a 512 * 512 pixel and the size of all filters is a square window of size 3*3. Results indicate that fuzzy filters achieve varying successes in noise reduction in image compared to