This work presents the characteristics of plasma produced by fundamental wavelength (1064 nm) Q- switched Nd:YAG laser on Ag:Ni alloy in distilled water were investigated at different laser energies by optical emission spectroscopy technique. The size of produced nanoparticles from Ag:Ni target in distilled water were studied, by x-ray diffraction, UV-visible absorbance and atomic force microscopy, at different laser energies. Spectroscopic measurements show that electron temperature and electron density increase with increasing laser energy. It was found from AFM measurements that the produced nanoparticle size decrease from 97.13 nm to 71.20 nm, while XRD shows that the crestalline size decrease from 15.5 nm to 9 nm with increasing pulse laser energy. UV- visible absorbance shows at plasmon peaks shifted from 410 to 395 nm with increasing laser energy.
This work presents the study of the dark current density and the capacitance for porous silicon prepared by photo-electrochemical etching for n-type silicon with laser power density of 10mw/cm2 and wavelength (650nm) under different anodization time (30,40,50,60) minute. The results obtained from this study shows different chara that different characteristic of porous diffecteristics for the different porous Silicon layers.
Background: Failure of resin bases were a major disadvantage recorded in the constructed dentures. Reinforcements of the repair joint with nano fillers represent an attempt to enhance the strength and durability. The purpose of the research was to estimate the influence of nano fillers reinforcement with (ZrO2 and Al2O3) on impact and transverse strength of denture bases repaired with either cold or hot processing acrylic resin. Materials and methods: A hundred and forty (140) samples were processed with hot cured resin and organized in subgroups depending on the repair materials and condition (without repair (control), repair with hot cure, cold cure, hot and cold cure reinforced with either (5% Zr2O or 0.5% Al2O3). The samples in these
... Show MoreNano gamma alumina was prepared by double hydrolysis process using aluminum nitrate nano hydrate and sodium aluminate as an aluminum source, hydroxyle poly acid and CTAB (cetyltrimethylammonium bromide) as templates. Different crystallization temperatures (120, 140, 160, and 180) 0C and calcinations temperatures (500, 550, 600, and 650) 0C were applied. All the batches were prepared at PH equals to 9. XRD diffraction technique and infrared Fourier transform spectroscopy were used to investigate the phase formation and the optical properties of the nano gamma alumina. N2 adsorption-desorption (BET) was used to measure the surface area and pore volume of the prepared nano alumina, the particle size and the
... Show MoreThis study was undertaken to prepare Nano zinc oxide (ZnO) by precipitation and microemulsion methods. Scanning electron microscopy (SEM), X-ray diffraction (XRD), FTIR spectrometry, atomic force microscopy (AFM), and Brunauer Emmett Teller (BET) surface area were the techniques employed for the preparation. The particle size of prepared nano ZnO was 69.15nm and 88.49nm for precipitation and microemulsion methods, respectively, which corresponded to the BET surface area 20.028 and 16.369m2/g respectively. The activity of prepared nano ZnO as a photocatalyst was estimated by the removal of ampicillin (Amp) under visible light. This study, therefore, examined the effect of pH in the range of 5-11, initial concen
... Show MoreIn this study the melting point and hardness of the paraffin wax was improved by mixing it with 1:1 ratio of micro crystalline wax then adding weight percentage wt% of locally produced nano particles (CuO,ZnO,AI2O3 and bentonite ) for each addition to the wax mixture. The results showed an increase in the melting point and hardness values of the prepared samples by increasing the weight percentage of each nano particles additives. . It was found that the addition of nano bentonite to the wax mixture gave high melting point values (122.5°C)and hardness (81.2)followed by melting point value (97°C)and hardness(68.2)resulting from the addition of CuO nano particles to the wax mixture compared to other used nano particles.
The thermal evaporation technique was used to prepare the Ni-Cr films with a thickness of 200 nm and a rate of deposition of 0.22nm/Sec. The annealing was performed at 373 and 473 K. The structural and optical analyses of the grown layers were achieved and XRD patterns showed amorphous structure transferred to polycrystalline for film annealed at 373 and 473 K. AFM analysis showed that the surface of Ni-Cr films is homogenous and the average roughness, optical energy gap and absorption coefficient were increased with increasing annealing temperature (Ta).
The study included the collection of samples of raw cow milk to isolate Leuconostoc bacteria, samples were sub cultured on De-Man Rogosa Sharpe-Vancomycin medium, the pure colonies were selected and subjected to the cultural and microscopically tests, according to that 25 cocci bacterial isolates were obtained, then isolates were subjected to biochemical tests. Result of tests showed that 12 isolates belong to the genus Leuconostoc out of 25 cocci bacterial isolates, Vitek2 system was used as a supplementary step. Results of final identification showed that 3 sub species were obtained included Leuconostoc mesenteroides ssp. cremoris 9 out of 12 isolates, while it was 2 isolates of Leuconostoc mesenteroides ssp. mesenteroides and one isol
... Show MoreThe Synthesis of yttrium oxide nanoparticles have been achieved via calcination
of yttrium hydroxide produced from the reaction of aqueous solutions of yttrium
nitrate and sodium hydroxide at pH = 13 using hydrothermal and hydrothermal
microwave methods. Effect of heat treatment of the resulted yttrium hydroxide
powder on the morphology and crystallinity of the resulting oxide was studied at
calcination 500, 700 and 1000°C to obtain. The resulted products were
characterized by means of X-ray diffraction (XRD), scanning electron microscope
(SEM), atomic force microscope (AFM), Fourier transform infrared spectrometer
(FTIR) and thermal analyses (TG).
This study has been accomplished by testing three different models to determine rocks type, pore throat radius, and flow units for Mishrif Formation in West Qurna oilfield in Southern Iraq based on Mishrif full diameter cores from 20 wells. The three models that were used in this study were Lucia rocks type classification, Winland plot was utilized to determine the pore throat radius depending on the mercury injection test (r35), and (FZI) concepts to identify flow units which enabled us to recognize the differences between Mishrif units in these three categories. The study of pore characteristics is very significant in reservoir evaluation. It controls the storage mechanism and reservoir fluid prope