Recognizing facial expressions and emotions is a basic skill that is learned at an early age and it is important for human social interaction. Facial expressions are one of the most powerful natural and immediate means that humans use to express their feelings and intentions. Therefore, automatic emotion recognition based on facial expressions become an interesting area in research, which had been introduced and applied in many areas such as security, safety health, and human machine interface (HMI). Facial expression recognition transition from controlled environmental conditions and their improvement and succession of recent deep learning approaches from different areas made facial expression representation mostly based on using a deep neural network that is generally divided into two critical issues. These are a variation of expression and overfitting. Expression variations such as identity bias, head pose, illumination, and overfitting formed as a result of a lack of training data. This paper firstly discussed the general background and terminology utilized in facial expression recognition in field of computer vision and image processing. Secondly, we discussed general pipeline of deep learning. After that, for facial expression recognition to classify emotion there should be datasets in order to compare the image with the datasets for classifying the emotion. Besides that we summarized, discussed, and compared illustrated various recent approaches of researchers that have used deep techniques as a base for facial expression recognition, then we briefly presented and highlighted the classification of the deep feature. Finally, we summarized the most critical challenges and issues that are widely present for overcoming, improving, and designing an efficient deep facial expression recognition system.
Internet of Things (IoT) is one of the newest matters in both industry and academia of the communication engineering world. On the other hand, wireless mesh networks, a network topology that has been debate for decades that haven’t been put into use in great scale, can make a transformation when it arises to the network in the IoT world nowadays. A Mesh IoT network is a local network architecture in which linked devices cooperate and route data using a specified protocol. Typically, IoT devices exchange sensor data by connecting to an IoT gateway. However, there are certain limitations if it involves to large number of sensors and the data that should be received is difficult to analyze. The aim of the work here is to implement a self-
... Show MoreEfficient management of treated sewage effluents protects the environment and reuse of municipal, industrial, agricultural and recreational as compensation for water shortages as a second source of water. This study was conducted to investigate the overall performance and evaluate the effluent quality from Al- Rustamiya sewage treatment plant (STP), Baghdad, Iraq by determining the effluent quality index (EQI). This assessment included daily records of major influent and effluent sewage parameters that were obtained from the municipal sewage plant laboratory recorded from January 2011 to December 2018. The result showed that the treated sewage effluent quality from STP was within the Iraqi quality standards (IQS) for disposal and t
... Show More—Medical images have recently played a significant role in the diagnosis and detection of various diseases. Medical imaging can provide a means of direct visualization to observe through the human body and notice the small anatomical change and biological processes associated by different biological and physical parameters. To achieve a more accurate and reliable diagnosis, nowadays, varieties of computer aided detection (CAD) and computer-aided diagnosis (CADx) approaches have been established to help interpretation of the medical images. The CAD has become among the many major research subjects in diagnostic radiology and medical imaging. In this work we study the improvement in accuracy of detection of CAD system when comb
... Show MoreTransmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p
... Show MoreThe paper proposes a methodology for predicting packet flow at the data plane in smart SDN based on the intelligent controller of spike neural networks(SNN). This methodology is applied to predict the subsequent step of the packet flow, consequently reducing the overcrowding that might happen. The centralized controller acts as a reactive controller for managing the clustering head process in the Software Defined Network data layer in the proposed model. The simulation results show the capability of Spike Neural Network controller in SDN control layer to improve the (QoS) in the whole network in terms of minimizing the packet loss ratio and increased the buffer utilization ratio.
This study research to Showing The impact of the integration process on the quality of Insurance service and analyze the impact financially to determine whether there is any impact on the quality of the insurance service, in addition to identifying the obstacles that impede the merger between the insurance companies, insurance and the appropriate proposals for its' application and benefit from the benefits achieved.
The importance of The study lies in the fact that it is an important and vital spotlight that is becoming increasingly important in the world to confront the various difficulties and crises that have occurred recently in light of the liberalization of international trade, globalization a
... Show MoreNowadays, university education stands in front of both students who feel they are weak and teachers who are addicted to using traditional and dependent teaching. This has led to have negative repercussions on the learner from different aspects, including the mental aspect and the academic achievement process. Therefore, the present research is concerned with finding a new teaching method that adopts the motivation by the fear of failure technique. Thus, the study aims to examine the effect of adopting this method on students’ academic achievement. To achieve this aim, an experimental method was used, and an achievement test was built for the curriculum material of level two students. The pretest test was applied on 17 male and female s
... Show MoreThe current research examines the employment of indicators of stereotypes and the dimensions of organizational clarification to achieve planned organizational behaviour on a sample of employees in a number of departments of the Faculties of Engineering, University of Kufa, for a sample of (122) teaching staff. This research proposes the use of positive indicators of stereotypes for both the organization and employees and their awareness of what they want to obtain and what should be done for both parties and the removal of organizational clarity represented by the functional dimension that explores to what degree the employee's understanding of the internal strategy of the organization and the strategic dimension that searches fo
... Show MoreIn this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreTo evaluate the Interaction of Mn(II), Fe(II), Co(II), Ni(II),Cu(II), Zn(II) And Cd(II) Mixed- Ligand Complexes of cephalexin mono hydrate (antibiotics) And Furan-2-Carboxylic Acid To The Different DNA Sources. All the metal complexes were observed to cleave the DNA. A difference in the bands of complexes .The cleavage efficiency of the complexes compared with that of the control is due to their efficient DNA-binding ability and the other factors like solubility and bond length between the metal and ligand may also increase the DNA-binding ability. The ligands (Cephalexin mono hydrate (antibiotics) and Furan-2- Carboxylic acid and there newly synthesized metal complexes shows good antimicrobial activities and Binding DNA , thus, can be used
... Show More