Recognizing facial expressions and emotions is a basic skill that is learned at an early age and it is important for human social interaction. Facial expressions are one of the most powerful natural and immediate means that humans use to express their feelings and intentions. Therefore, automatic emotion recognition based on facial expressions become an interesting area in research, which had been introduced and applied in many areas such as security, safety health, and human machine interface (HMI). Facial expression recognition transition from controlled environmental conditions and their improvement and succession of recent deep learning approaches from different areas made facial expression representation mostly based on using a deep neural network that is generally divided into two critical issues. These are a variation of expression and overfitting. Expression variations such as identity bias, head pose, illumination, and overfitting formed as a result of a lack of training data. This paper firstly discussed the general background and terminology utilized in facial expression recognition in field of computer vision and image processing. Secondly, we discussed general pipeline of deep learning. After that, for facial expression recognition to classify emotion there should be datasets in order to compare the image with the datasets for classifying the emotion. Besides that we summarized, discussed, and compared illustrated various recent approaches of researchers that have used deep techniques as a base for facial expression recognition, then we briefly presented and highlighted the classification of the deep feature. Finally, we summarized the most critical challenges and issues that are widely present for overcoming, improving, and designing an efficient deep facial expression recognition system.
The Coronavirus Disease 2019 (COVID-19) pandemic has caused an unprecedented disruption in medical education and healthcare systems worldwide. The disease can cause life-threatening conditions and it presents challenges for medical education, as instructors must deliver lectures safely, while ensuring the integrity and continuity of the medical education process. It is therefore important to assess the usability of online learning methods, and to determine their feasibility and adequacy for medical students. We aimed to provide an overview of the situation experienced by medical students during the COVID-19 pandemic, and to determine the knowledge, attitudes, and practices of medical students regarding electronic medical education.
... Show MoreThe research aimed to find the effectiveness of teaching impact of the reflex learning strategy on the fifth class female student achievement of the geography content material). The researcher adopted the null hypotheses (there are no statistically significant differences at (0,05) level between the women score mean of the experimental group student who has been taught by the cement material assigned by the reflex learning strategy, and that of the control group who have been taught by the traditional method on the achievement test. The researcher adopted the post-test experimental design to measure students’ achievement. The population of the present study has been limited to the fifth literary class female stud
... Show MoreMany financial institutions invest their surplus funds in stocks, either to obtain dividends or for trading purposes and to obtain profits from the difference between the cost and the selling price, and investment in shares represents an important part of the financial position of financial institutions applying to the common accounting system of banks and insurance companies, in addition to their impact It is clear on the result of the activity of these institutions.The aim of the research is to define what the shares and their types are, and to indicate the accounting treatments needed to move towards the process of adopting the International Financial Reporting Standard No. (9) and its reflection on its financial statements. I
... Show MoreThis study investigated three aims for the extent of effectiveness of the two systems in educational development of educators. To achieve this, statistical analysis was performed between the two groups that consisted of (26) participants of the electronic teaching method and (38) participants who underwent teaching by the conventional electronic lecture. The results indicated the effectiveness of the “electronic teaching method” and the “electronic lecture method” for learning of the participants in educational development. Also, it indicated the level of equivalence from the aspect of effectiveness of the two methods and at a confidence level of (0.05). This study reached several conclusions, recommendations, and suggestio
... Show MoreFatty Acid Methyl Ester (FAME) produced from biomass offers several advantages such as renewability and sustainability. The typical production process of FAME is accompanied by various impurities such as alcohol, soap, glycerol, and the spent catalyst. Therefore, the most challenging part of the FAME production is the purification process. In this work, a novel application of bulk liquid membrane (BLM) developed from conventional solvent extraction methods was investigated for the removal of glycerol from FAME. The extraction and stripping processes are combined into a single system, allowing for simultaneous solvent recovery whereby low-cost quaternary ammonium salt-glycerol-based deep eutectic solvent (DES) is used as the membrane phase.
... Show MoreThe current study was conducted for studying the impact of cold plasma on the expression level of three genes that participate in the biosynthesis of the phenylpropanoid pathway in Ocimum basilicum. These studied genes were cinnamate 4-hydroxylase (c4h), 4-coumarate CoA ligase (4cl), and eugenol O-methyl transferase (eomt). Also, the cold plasma impact was studied on the essential oil components and their relation with the gene expression level. The results demonstrated that cold plasma seeds germination of the treated groups 2 (initially for 3 minutes and 3 minutes after 7 days) ,and group 3(initially for 5 minutes and 3 minutes after 7 days) were faster than the control group. Also, the height average of the mature plants of
... Show MoreA substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreCurrently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of
... Show More