Preferred Language
Articles
/
ijs-6054
Detection and Classification of The Osteoarthritis in Knee Joint Using Transfer Learning with Convolutional Neural Networks (CNNs)
...Show More Authors

    Osteoarthritis (OA) is a disease of human joints, especially the knee joint, due to significant weight of the body. This disease leads to rupture and degeneration of parts of the cartilage in the knee joint, which causes severe pain. Diagnosis of this disease can be obtained through X-ray. Deep learning has become a popular solution to medical issues due to its fast progress in recent years. This research aims to design and build a classification system to minimize the burden on doctors and help radiologists to assess the severity of the pain, enable them to make an optimal diagnosis and describe the correct treatment. Deep learning-based approaches, such as Convolution Neural Networks (CNNs), have been used to detect knee OA using transfer learning with fine-tuning. This paper proposed three versions of pre-trained networks (VGG16, VGG19, and ResNet50) for handling the classification task. According to the classification results, The proposed model ResNet50 outperformed the other models a validation accuracy of 91.51% has been obtained.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Artificial Neural Network and Latent Semantic Analysis for Adverse Drug Reaction Detection
...Show More Authors

Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (8)
Scopus Crossref
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Stability of Back Propagation Training Algorithm for Neural Networks
...Show More Authors

In this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained

View Publication Preview PDF
Crossref
Publication Date
Sun Jun 06 2010
Journal Name
Baghdad Science Journal
Using Neural Network with Speaker Applications
...Show More Authors

In Automatic Speech Recognition (ASR) the non-linear data projection provided by a one hidden layer Multilayer Perceptron (MLP), trained to recognize phonemes, and has previous experiments to provide feature enhancement substantially increased ASR performance, especially in noise. Previous attempts to apply an analogous approach to speaker identification have not succeeded in improving performance, except by combining MLP processed features with other features. We present test results for the TIMIT database which show that the advantage of MLP preprocessing for open set speaker identification increases with the number of speakers used to train the MLP and that improved identification is obtained as this number increases beyond sixty.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 01 2007
Journal Name
Journal Of Al-nahrain University Science
ON THE GREEDY RADIAL BASIS FUNCTION NEURAL NETWORKS FOR APPROXIMATION MULTIDIMENSIONAL FUNCTIONS
...Show More Authors

The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Proposed Security Models for Node-level and Network-level Aspects of Wireless Sensor Networks Using Machine Learning Techniques
...Show More Authors

     As a result of the pandemic crisis and the shift to digitization, cyber-attacks are at an all-time high in the modern day despite good technological advancement. The use of wireless sensor networks (WSNs) is an indicator of technical advancement in most industries. For the safe transfer of data, security objectives such as confidentiality, integrity, and availability must be maintained. The security features of WSN are split into node level and network level. For the node level, a proactive strategy using deep learning /machine learning techniques is suggested. The primary benefit of this proactive approach is that it foresees the cyber-attack before it is launched, allowing for damage mitigation. A cryptography algorithm is put

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Feb 08 2023
Journal Name
Iraqi Journal Of Science
Using One-Class SVM with Spam Classification
...Show More Authors

Support Vector Machine (SVM) is supervised machine learning technique which has become a popular technique for e-mail classifiers because its performance improves the accuracy of classification. The proposed method combines gain ratio (GR) which is feature selection method with one-class training SVM to increase the efficiency of the detection process and decrease the cost. The results show high accuracy up to 100% and less error rate with less number of feature to 5 features.

View Publication Preview PDF
Publication Date
Mon Sep 30 2024
Journal Name
Iraqi Journal Of Science
Overlapping Structure Detection in Protein-Protein Interaction Networks Using a Modified Version of Particle Swarm Optimization
...Show More Authors

In today's world, the science of bioinformatics is developing rapidly, especially with regard to the analysis and study of biological networks. Scientists have used various nature-inspired algorithms to find protein complexes in protein-protein interaction (PPI) networks. These networks help scientists guess the molecular function of unknown proteins and show how cells work regularly. It is very common in PPI networks for a protein to participate in multiple functions and belong to many complexes, and as a result, complexes may overlap in the PPI networks. However, developing an efficient and reliable method to address the problem of detecting overlapping protein complexes remains a challenge since it is considered a complex and har

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Jan 13 2016
Journal Name
University Of Baghdad
Employ Mathematical Model and Neural Networks for Determining Rate Environmental Contamination
...Show More Authors

Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Applied Soft Computing
A new evolutionary algorithm with locally assisted heuristic for complex detection in protein interaction networks
...Show More Authors

View Publication
Scopus (12)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Mar 10 2023
Journal Name
Mathematics
Hamilton–Jacobi Inequality Adaptive Robust Learning Tracking Controller of Wearable Robotic Knee System
...Show More Authors

A Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref