The approximate solution of a nonlinear parabolic boundary value problem with variable coefficients (NLPBVPVC) is found by using mixed Galekin finite element method (GFEM) in space variable with Crank Nicolson (C-N) scheme in time variable. The problem is reduced to solve a Galerkin nonlinear algebraic system (NLAS), which is solved by applying the predictor and the corrector method (PCM), which transforms the NLAS into a Galerkin linear algebraic system (LAS). This LAS is solved once using the Cholesky technique (CHT) as it appears in the MATLAB package and once again using the General Cholesky Reduction Order Technique (GCHROT), the GCHROT is employed here at first time to play an important role for saving a massive time. Illustrative examples are given to solve the NLPBVPVC with the GCHROT, the results are given by tables and figures which show from a side efficiency of this technique, and from another side show that the two methods GCHROT and CHM are given the same results, but the suggesting first technique is very fast than the second one.
The purpose of this research paper is to present the second-order homogeneous complex differential equation , where , which is defined on the certain complex domain depends on solution behavior. In order to demonstrate the relationship between the solution of the second-order of the complex differential equation and its coefficient of function, by studying the solution in certain cases: a meromorphic function, a coefficient of function, and if the solution is considered to be a transformation with another complex solution. In addition, the solution has been provided as a power series with some applications.
In this paper, we study the convergence theorems of the Modified Ishikawa iterative sequence with mixed errors for the uniformly continuous mappings and solving nonlinear uniformly continuous mappings equation in arbitrary real Banach space.
This paper is concerned with the oscillation of all solutions of the n-th order delay differential equation . The necessary and sufficient conditions for oscillatory solutions are obtained and other conditions for nonoscillatory solution to converge to zero are established.
This paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
The integral transformations is a complicated function from a function space into a simple function in transformed space. Where the function being characterized easily and manipulated through integration in transformed function space. The two parametric form of SEE transformation and its basic characteristics have been demonstrated in this study. The transformed function of a few fundamental functions along with its time derivative rule is shown. It has been demonstrated how two parametric SEE transformations can be used to solve linear differential equations. This research provides a solution to population growth rate equation. One can contrast these outcomes with different Laplace type transformations
In this work, a class of stochastically perturbed differential systems with standard Brownian motion of ordinary unperturbed differential system is considered and studied. The necessary conditions for the existence of a unique solution of the stochastic perturbed semi-linear system of differential equations are suggested and supported by concluding remarks. Some theoretical results concerning the mean square exponential stability of the nominal unperturbed deterministic differential system and its equivalent stochastically perturbed system with the deterministic and stochastic process as a random noise have been stated and proved. The proofs of the obtained results are based on using the stochastic quadratic Lyapunov function meth
... Show MoreIn this study, an efficient novel technique is presented to obtain a more accurate analytical solution to nonlinear pantograph differential equations. This technique combines the Adomian decomposition method (ADM) with the homotopy analysis method concepts (HAM). The whole integral part of HAM is used instead of an integral part of ADM approach to get higher accurate results. The main advantage of this technique is that it gives a large and more extended convergent region of iterative approximate solutions for long time intervals that rapidly converge to the exact solution. Another advantage is capable of providing a continuous representation of the approximate solutions, which gives better information over whole time interv
... Show MoreAn efficient modification and a novel technique combining the homotopy concept with Adomian decomposition method (ADM) to obtain an accurate analytical solution for Riccati matrix delay differential equation (RMDDE) is introduced in this paper . Both methods are very efficient and effective. The whole integral part of ADM is used instead of the integral part of homotopy technique. The major feature in current technique gives us a large convergence region of iterative approximate solutions .The results acquired by this technique give better approximations for a larger region as well as previously. Finally, the results conducted via suggesting an efficient and easy technique, and may be addressed to other non-linear problems.
In this paper, a numerical approximation for a time fractional one-dimensional bioheat equation (transfer paradigm) of temperature distribution in tissues is introduced. It deals with the Caputo fractional derivative with order for time fractional derivative and new mixed nonpolynomial spline for second order of space derivative. We also analyzed the convergence and stability by employing Von Neumann method for the present scheme.