We introduce in this paper the concept of an approximately pure submodule as a generalization of a pure submodule, that is defined by Anderson and Fuller. If every submodule of an R-module is approximately pure, then is called F-approximately regular. Further, many results about this concept are given.
Let M be an R-module. We introduce in this paper the concept of strongly cancellation module as a generalization of cancellation modules. We give some characterizations about this concept, and some basic properties. We study the direct sum and the localization of this kind of modules. Also we prove that every module over a PID is strongly module and we prove every locally strong module is strongly module.
In this article, we study the notion of closed Rickart modules. A right R-module M is said to be closed Rickart if, for each , is a closed submodule of M. Closed Rickart modules is a proper generalization of Rickart modules. Many properties of closed Rickart modules are investigated. Also, we provide some characterizations of closed Rickart modules. A necessary and sufficient condition is provided to ensure that this property is preserved under direct sums. Several connections between closed Rickart modules and other classes of modules are given. It is shown that every closed Rickart module is -nonsingular module. Examples which delineate this concept and some results are provided.
In this work, the fractional damped Burger's equation (FDBE) formula = 0,
Fuchs introduced purely extending modules as a generalization of extending modules. Ahmed and Abbas gave another generalization for extending modules named semi-extending modules. In this paper, two generalizations of the extending modules are combined to give another generalization. This generalization is said to be almost semi-extending. In fact, the purely extending modules lies between the extending and almost semi-extending modules. We also show that an almost semi-extending module is a proper generalization of purely extending. In addition, various examples and important properties of this class of modules are given and considered. Another characterization of almost semi-extending modules is established. Moreover, the re
... Show MoreThe -s-extending modules will be purpose of this paper, a module M is -s-extending if each submodule in M is essential in submodule has a supplement that is direct summand. Initially, we give relation between this concept with weakly supplement extending modules and -supplemented modules. In fact, we gives the following implications:
Lifting modules -supplemented modules -s-extending modules weakly supplement extending modules.
It is also we give examples show that, the converse of this result is not true. Moreover, we study when the converse of this result is true.
In this work, we introduce a new generalization of both Rationally extending and Goldie extending which is Goldie Rationally extending module which is known as follows: if for any submodule K of an R-module M there is a direct summand U of M (denoted by U⊆_⊕ M) such that K β_r U. A β_r is a relation of K⊆M and U⊆M, which defined as K β_r U if and only if K ⋂U⊆_r K and K⋂U⊆_r U.
In this paper, we introduce a type of modules, namely S-K-nonsingular modules, which is a generalization of K-nonsingular modules. A comprehensive study of these classes of modules is given.
Let R be a ring with identity and let M be a left R-module. M is called µ-lifting modulei f for every sub module A of M, There exists a direct summand D of M such that M = D D', for some sub module D' of M such that A≤D and A D'<<µ D'. The aim of this paper is to introduce properties of µ-lifting modules. Especially, we give characterizations of µ-lifting modules. On the other hand, the notion of amply µ-supplemented iis studied as a generalization of amply supplemented modules, we show that if M is amply µ-supplemented such that every µ-supplement sub module of M
... Show MoreIn this note we consider a generalization of the notion of extending modules namely supplement extending modules. And study the relation between extending and supplement extending modules. And some properties of supplement extending. And we proved the direct summand of supplement extending module is supplement extending, and the converse is true when the module is distributive. Also we study when the direct sum of supplement extending modules is supplement extending.