In this paper we introduce G-Rad-lifting module as aproper generalization of lifting module, some properties of this type of modules are investigated. We prove that if M is G-Rad- lifting and
, then
, and
are G-Rad- lifting, hence we Conclude the direct summand of G-Rad- lifting is also G-Rad- lifting. Also we prove that if M is a duo module with
and
are G- Rad- lifting then M is G-Rad- lifting.
We introduce the notion of t-polyform modules. The class of t- polyform modules contains the class of polyform modules and contains the class of t-essential quasi-Dedekind.
Many characterizations of t-polyform modules are given. Also many connections between these class of modules and other types of modules are introduced.
In this paper we introduced the concept of 2-pure submodules as a generalization of pure submodules, we study some of its basic properties and by using this concept we define the class of 2-regular modules, where an R-module M is called 2-regular module if every submodule is 2-pure submodule. Many results about this concept are given.
In this paper we introduce the notion of semiprime fuzzy module as a generalization of semiprime module. We investigate several characterizations and properties of this concept.
Let R be a commutative ring with identity and M be unitary (left) R-module. The principal aim of this paper is to study the relationships between relatively cancellation module and multiplication modules, pure submodules and Noetherian (Artinian) modules.
In the current study, the definition of mapping of fuzzy neutrosophic generalized semi-continuous and fuzzy neutrosophic alpha has generalized mapping as continuous. The study confirmed some theorems regarding such a concept. In the following, it has been found relationships among fuzzy neutrosophic alpha generalized mapping as continuous, fuzzy neutrosophic mapping as continuous, fuzzy neutrosophic alpha mapping as continuous, fuzzy neutrosophic generalized semi mapping as continuous, fuzzy neutrosophic pre mapping as continuous and fuzzy neutrosophic γ mapping as continuous.
The cutting transport problem in the drilling operation is very complex because many parameters impact the process, which is nonlinearity interconnected. It is an important factor affecting time, cost and quality of the deviated and horizontal well. The main objective is to evaluate the influence of main drilling Parameters, rheological properties and cuttings that characterise lifting capacity through calculating the minimum flow rate required and cutting bed height and investigate these factors and how they influenced stuck pipe problems in deviated wells for Garraf oil field. The results obtained from simulations using Well Plan™ Software were showed that increasing viscosity depends on other conditions for an increase or dec
... Show MoreLet R be a ring with 1 and W is a left Module over R. A Submodule D of an R-Module W is small in W(D ≪ W) if whenever a Submodule V of W s.t W = D + V then V = W. A proper Submodule Y of an R-Module W is semismall in W(Y ≪_S W) if Y = 0 or Y/F ≪ W/F ∀ nonzero Submodules F of Y. A Submodule U of an R-Module E is essentially semismall(U ≪es E), if for every non zero semismall Submodule V of E, V∩U ≠ 0. An R-Module E is essentially semismall quasi-Dedekind(ESSQD) if Hom(E/W, E) = 0 ∀ W ≪es E. A ring R is ESSQD if R is an ESSQD R-Module. An R-Module E is a scalar R-Module if, ∀ , ∃ s.t V(e) = ze ∀ . In this paper, we study the relationship between ESSQD Modules with scalar and multiplication Modules. We show that
... Show MoreLet be a ring with 1 and D is a left module over . In this paper, we study the relationship between essentially small quasi-Dedekind modules with scalar and multiplication modules. We show that if D is a scalar small quasi-prime -module, thus D is an essentially small quasi-Dedekind -module. We also show that if D is a faithful multiplication -module, then D is an essentially small prime -module iff is an essentially small quasi-Dedekind ring.
Seeds, beans, leaves, fruit peel and seeds of five plants (Ferula assa-foetida, Coffea robusta, Olea europaea, Punica granatum and Vitis vinifera, respectively) were extracted with four solvents (distilled water, 80% methanol, 80% acetone and a mixed solvent that included methanol, ethanol, acetone and n-butanol at proportions 7:1:1:1). Such manipulation yielded 20 extracts, which were phytochemically analyzed for total polyphenols (TP) and flavonoids (TF). The DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (RSA) and DPP-4 (dipeptidyl peptidase-4) relative inhibition activity (RIA) were also assessed for each extract. The results revealed that mixed solvent extract of V.
... Show More