In this paper we show the nilpotency of nilpotent derivation of simeprime Γ-ring with characteristic 2 must be a power of 2 and we show the nilpotency of a nilpotent derivation of simeprime Γ-ring is either odd or a power of 2 without torsion condition.
Let R be a semiprime ring with center Z(R) and U be a nonzero ideal of R. An additive mappings are called right centralizer if ( ) ( ) and ( ) ( ) holds for all . In the present paper, we introduce the concepts of generalized strong commutativity centralizers preserving and generalized strong cocommutativity preserving centralizers and we prove that R contains a nonzero central ideal if any one of the following conditions holds: (i) ( ) ( ), (ii) [ ( ) ( )] , (iii) [ ( ) ( )] [ ], (iv) ( ) ( ) , (v) ( ) ( ) , (vi) [ ( ) ( )] , (vii) ( ) ( ) ( ), (viii) ( ) ( ) for all .
In this study, we prove that let N be a fixed positive integer and R be a semiprime -ring with extended centroid . Suppose that additive maps such that is onto, satisfy one of the following conditions belong to Г-N- generalized strong commutativity preserving for short; (Γ-N-GSCP) on R belong to Г-N-anti-generalized strong commutativity preserving for short; (Γ-N-AGSCP) Then there exists an element and additive maps such that is of the form and when condition (i) is satisfied, and when condition (ii) is satisfied
The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .
In this paper we study necessary and sufficient conditions for a reverse- centralizer of a semiprime ring R to be orthogonal. We also prove that a reverse- centralizer T of a semiprime ring R having a commuting generalized inverse is orthogonal
In this paper, we introduce the concept of generalized strong commutativity (Cocommutativity) preserving right centralizers on a subset of a Γ-ring. And we generalize some results of a classical ring to a gamma ring.
The purpose of this paper is to prove the following result : Let R be a 2-torsion free prime *-ring , U a square closed *-Lie ideal, and let T: RR be an additive mapping. Suppose that 3T(xyx) = T(x) y*x* + x*T(y)x* + x*y*T(x) and x*T(xy+yx)x* = x*T(y)x*2 + x*2T(y)x* holds for all pairs x, y U , and T(u) U, for all uU, then T is a reverse *-centralizer.
In this work we present the concepts of topological Γ-ring, norm of topological Γ-ring, homomorphism, kernel of topological Γ-ring and compact topological Γ-ring
The main purpose of this paper is to study some results concerning reduced ring with another concepts as semiprime ring ,prime ring,essential ideal ,derivations and homomorphism ,we give some results a bout that.
Nano γ-Al2O3 support was prepared by co-precipitation method by using different calcination temperatures (550, 600, and 750) oC. Then nano NiMo/γ-Al2O3 catalyst was prepared by impregnation method were nickel carbonate (source of Ni) and ammonium paramolybdate (source of Mo) on the best prepared nano γ-Al2O3 support at calcination temperature 550 oC. Make the characterizations for prepared nano γ-Al2O3 support at different temperatures and for nano NiMo/γ-Al2O3 catalyst like X-ray diffraction, X-ray fluorescent, AFM, SEM, BET surface area, and pore volume.
The N
... Show MoreIn this study, we introduce and study the concepts of generalized ( , )-reverse derivation, Jordan generalized ( , )-reverse derivation, and Jordan generalized triple ( , )-reverse derivation from Γ-semiring S into ΓS-module X. The most important findings of this paper are as follows:
If S is Γ-semiring and X is ΓS-module, then every Jordan generalized ( , )- reverse derivations from S into X associated with Jordan ( , )-reverse derivation d from S into X is ( , )-reverse derivation from S into X.