Data mining is a data analysis process using software to find certain patterns or rules in a large amount of data, which is expected to provide knowledge to support decisions. However, missing value in data mining often leads to a loss of information. The purpose of this study is to improve the performance of data classification with missing values, precisely and accurately. The test method is carried out using the Car Evaluation dataset from the UCI Machine Learning Repository. RStudio and RapidMiner tools were used for testing the algorithm. This study will result in a data analysis of the tested parameters to measure the performance of the algorithm. Using test variations: performance at C5.0, C4.5, and k-NN at 0% missing rate, performance at C5.0, C4.5, and k-NN at 5–50% missing rate, performance at C5.0 + k-NNI, C4.5 + k-NNI, and k-NN + k-NNI classifier at 5–50% missing rate, and performance at C5.0 + CMI, C4.5 + CMI, and k-NN + CMI classifier at 5–50% missing rate, The results show that C5.0 with k-NNI produces better classification accuracy than other tested imputation and classification algorithms. For example, with 35% of the dataset missing, this method obtains 93.40% validation accuracy and 92% test accuracy. C5.0 with k-NNI also offers fast processing times compared with other methods.
This research was carried out at University of Baghdad - College of Agricultural Engineering Sciences during the fall season of 2020 and spring season of 2021 in order to evaluate the effect of organic fertilizer and the foliar application of boron on the growth and yield of industrial potatoes (Solanum tuberosum L.). Using factorial experiment (5*4) within Randomized Complete Block Design with three replicates, the organic fertilizer (palm fronds peat) was applied at four levels (0, 12, 24, and 36 ton ha-1) in addition to the treatment of the recommended of chemical fertilizer. The foliar application of Boron was applied at four concentrations which were 0, 100, 150 and 200 mg (H3Bo3). L-1. The results Revealed a significant incr
... Show MoreThis paper is devoted to the analysis of nonlinear singular boundary value problems for ordinary differential equations with a singularity of the different kind. We propose semi - analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the singular points and its numerical approximation. Two examples are presented to demonstrate the applicability and efficiency of the methods. Finally, we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.
This paper devoted to the analysis of regular singular initial value problems for ordinary differential equations with a singularity of the first kind , we propose semi - analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the regular singular points and its numerical approximation, two examples are presented to demonstrate the applicability and efficiency of the methods. Finally , we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.
Local communities are in need of self-resources so that they can perform their multiple functions which serve the objectives of the local development, and tax revenues are considered as important sources of their funding. However, despite the efforts of the state to reform the fiscal system and to improve the management in the local administration, tax collection can increase when the state adopts a more effective policy to combat tax evasion and tax fraud. Accordingly, this research aims to shed light on the role of local tax revenues in the local development. A set of conclusions are drawn; the most important one is that Algeria, in order to achieve local development, has taken a set of reforms, which are still valid until now. The mos
... Show MoreBackground: Prostatic adenocarcinoma is the most widely recognized malignancy in men and the second cause of cancer-related mortality encountered in male patients after lung cancer.
Aim of the study: To assess the diagnostic value of diffusion weighted imaging (DWI) and its quantitative measurement, apparent diffusion coefficient (ADC), in the identification and localization of prostatic cancer compared with T2 weighted image sequence (T2WI).
Type of the study: a prospective analytic study
Patients and methods: forty-one male patients with suspected prostatic cancer were examined by pelvic MRI at the MRI department of the Oncology Teaching Hospital/Medical City in Baghdad
... Show MoreThis research is focused on an interpretive of 2D seismic data to study is reinterpreting seismic data by applying sufficient software (Petrel 2017) of the area between Al-Razzazah Lake and the Euphrates river belonging to Karbala'a and Al-Anbar Governorates, central Iraq. The delineation of the sub-surface structural features and evaluation of the structure of Najmah and Zubair Formations was done. The structure interpretation showed that the studied area was affected by normal fault bearing (NW-SE) direction with a small displacement. In contrast, time and depth maps showed monocline structures (nose structures) located in the western part of the studied area.
The concept of TQM is based on one of the concepts that combine administrative and innovative methods. The aim of the research is to demonstrate the dimensions of TQM in enhancing the satisfaction of the taxpayers through a survey of a sample of officials in the General Authority for Taxation and 50 officials. In the collection of data and information, and the results were analyzed using the SPSS program to find the most important compounds and factors in he method of analysis.
The research problem was represented by the non-application of the General Authority for Taxation to the entrances and modern practices in the administrative work. The results of some of the complications that accompany the tax accounting process, which af
... Show MoreAbstract— The growing use of digital technologies across various sectors and daily activities has made handwriting recognition a popular research topic. Despite the continued relevance of handwriting, people still require the conversion of handwritten copies into digital versions that can be stored and shared digitally. Handwriting recognition involves the computer's strength to identify and understand legible handwriting input data from various sources, including document, photo-graphs and others. Handwriting recognition pose a complexity challenge due to the diversity in handwriting styles among different individuals especially in real time applications. In this paper, an automatic system was designed to handwriting recognition
... Show MoreDocument clustering is the process of organizing a particular electronic corpus of documents into subgroups of similar text features. Formerly, a number of conventional algorithms had been applied to perform document clustering. There are current endeavors to enhance clustering performance by employing evolutionary algorithms. Thus, such endeavors became an emerging topic gaining more attention in recent years. The aim of this paper is to present an up-to-date and self-contained review fully devoted to document clustering via evolutionary algorithms. It firstly provides a comprehensive inspection to the document clustering model revealing its various components with its related concepts. Then it shows and analyzes the principle research wor
... Show More<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show More