Data mining is a data analysis process using software to find certain patterns or rules in a large amount of data, which is expected to provide knowledge to support decisions. However, missing value in data mining often leads to a loss of information. The purpose of this study is to improve the performance of data classification with missing values, precisely and accurately. The test method is carried out using the Car Evaluation dataset from the UCI Machine Learning Repository. RStudio and RapidMiner tools were used for testing the algorithm. This study will result in a data analysis of the tested parameters to measure the performance of the algorithm. Using test variations: performance at C5.0, C4.5, and k-NN at 0% missing rate, performance at C5.0, C4.5, and k-NN at 5–50% missing rate, performance at C5.0 + k-NNI, C4.5 + k-NNI, and k-NN + k-NNI classifier at 5–50% missing rate, and performance at C5.0 + CMI, C4.5 + CMI, and k-NN + CMI classifier at 5–50% missing rate, The results show that C5.0 with k-NNI produces better classification accuracy than other tested imputation and classification algorithms. For example, with 35% of the dataset missing, this method obtains 93.40% validation accuracy and 92% test accuracy. C5.0 with k-NNI also offers fast processing times compared with other methods.
Improving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
ABSTRACT Background: Piezosurgery device is a system developed recently to overcome the limitation of the traditional surgical technique in implant site preparation, which use the principle of ultrasonic microvibrations to create precise & selective cut in bone in harmony with the surrounding tissues. The aim of this study was to evaluate the outcomes of implants inserted by ultrasonic implant site preparation protocol (UISP) using piezosurgery device, regarding the survival rate, stability and other related factors, at 16 weeks postoperative follow up period. Materials and Methods: A total of (24) patients, (6) males and (18) females, aged between (19-51) years old, contributed in this study receiving a total of (42) implants, all of these
... Show MoreSolid dispersion (SD) is one of the most widely used methods to resolve issues accompanied by poorly soluble drugs. The present study was carried out to enhance the solubility and dissolution rate of Aceclofenac (ACE), a BCS class II drug with pH-dependent solubility, by the SD method. Effervescent assisted fusion technique (EFSD) using different hydrophilic carriers (mannitol, urea, Soluplus®, poloxamer 188, and poloxamer 407) in the presence of an effervescent base (sodium bicarbonate and citric acid) in different drug: carrier: effervescent base ratio and the conventional fusion technique (FSD) were used to prepare ACE SD. Solubility, dissolution rate, Fourier transformation infrared spectroscopy (FTIR), PowderX-ray diffraction
... Show MoreThe research aims to identify the extent to which Iraqi private banks practice profit management motivated by reducing the taxable base by increasing the provision for loan losses by relying on the LLP it model, which consists of a main independent variable (net profit before tax) and independent sub-variables (bank size, total debts to total equity, loans granted to total obligations) under the name of the variables governing the banking business. (Colmgrove-Smirnov) was used to test the normal distribution of data for all banks during the period 2017-2020, and then find the correlation between the main independent variable sub and the dependent variable by means of the correlation coefficient person, and then using the multiple
... Show MoreThe importance of physical and nonphysical architectural design values made architectural designers need good experience to be experts of architectural values reasonably without neglecting any value in the design process. The importance of such values made that ignoring any values and mistakes occurs in the design process. Simultaneously, architectural designers' different nature and the difference in their experiences are causing different understandings of the design values, thus causing architectural mistakes. The research problem appears from the randomly propagating of mistakes in contemporary architecture, which is about to become a phenomenon in Al Sulaymaniyah city. The research aims to find the main reason
... Show MoreA two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was
... Show MoreRecent researches showed that DNA encoding and pattern matching can be used for the intrusion-detection system (IDS), with results of high rate of attack detection. The evaluation of these intrusion detection systems is based on datasets that are generated decades ago. However, numerous studies outlined that these datasets neither inclusively reflect the network traffic, nor the modern low footprint attacks, and do not cover the current network threat environment. In this paper, a new DNA encoding for misuse IDS based on UNSW-NB15 dataset is proposed. The proposed system is performed by building a DNA encoding for all values of 49 attributes. Then attack keys (based on attack signatures) are extracted and, finally, Raita algorithm is app
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreThe paired sample t-test is a type of classical test statistics that is used to test the difference between two means in paired data, but it is not robust against the violation of the normality assumption. In this paper, some alternative robust tests are suggested by combining the Jackknife resampling with each of the Wilcoxon signed-rank test for small sample size and Wilcoxon signed-rank test for large sample size, using normal approximation. The Monte Carlo simulation experiments were employed to study the performance of the test statistics of each of these tests depending on the type one error rates and the power rates of the test statistics. All these tests were applied on different sa
... Show More