The context of multibiometric plays a pivotal role in enhancing an identification system, since a biometric system is now the most physical way of identifying and verifying individuals. The feature of multibiometric could be merged to produce identification information. However, unimodal biometric systems suffer from different types of breaching. Thus, mixing biometrics with cryptography leads to overcome small variations existing between diverse acquisitions of the same biometric in order to produce the robust system. In this paper, a new robust multibiometric system is proposed to create a random key from person multibiometric, facial and fingerprint images which are used simultaneously to produce this key. Several manipulations are made on compactness information for these two images to get a unique key for each person. The generated random key can be used for electronic numbers, passport identification, civil identification card, and it could be used as seeds for pseudo-random number generators. The multi-biometric system operates on two images, faces and fingerprints, by partitioning each image into four parts and taking the highest density for each one, XOR these parts; diffusions process is applied on these parts including permutation and thresholding to produce a random key. The generated key cannot be revocable that passed through randomness tests to ensure whether the generated key is accepted as true. Thus, the results of the tests are passed and presented that all generated keys are accepted to be random and unpredictable binary sequences and hence they can be used efficiently.
Sequence covering array (SCA) generation is an active research area in recent years. Unlike the sequence-less covering arrays (CA), the order of sequence varies in the test case generation process. This paper reviews the state-of-the-art of the SCA strategies, earlier works reported that finding a minimal size of a test suite is considered as an NP-Hard problem. In addition, most of the existing strategies for SCA generation have a high order of complexity due to the generation of all combinatorial interactions by adopting one-test-at-a-time fashion. Reducing the complexity by adopting one-parameter- at-a-time for SCA generation is a challenging process. In addition, this reduction facilitates the supporting for a higher strength of cove
... Show MoreThis study is planned with the aim of constructing models that can be used to forecast trip production in the Al-Karada region in Baghdad city incorporating the socioeconomic features, through the use of various statistical approaches to the modeling of trip generation, such as artificial neural network (ANN) and multiple linear regression (MLR). The research region was split into 11 zones to accomplish the study aim. Forms were issued based on the needed sample size of 1,170. Only 1,050 forms with responses were received, giving a response rate of 89.74% for the research region. The collected data were processed using the ANN technique in MATLAB v20. The same database was utilized to
The present work investigates the effect of magneto – hydrodynamic (MHD) laminar natural convection flow on a vertical cylinder in presence of heat generation and radiation. The governing equations which used are Continuity, Momentum and Energy equations. These equations are transformed to dimensionless equations using Vorticity-Stream Function method and the resulting nonlinear system
of partial differential equations are then solved numerically using finite difference approximation. A thermal boundary condition of a constant wall temperature is considered. A computer program (Fortran 90) was built to calculate the rate of heat transfer in terms of local Nusselt number, total mean Nusselt number, velocity distribution as well as te
We demonstrate a behavior of laser pulse grows through fiber laser inside and output cavity with a soliton fiber laser based on the multi-wall carbon nanotube saturable absorber (SA), we investigate the effects of a saturable absorber parameter on the mode-locking of a realistic Erbium fiber ring laser. Generalized nonlinear Schrodinger equation including the nonlinear effects as gain dispersion, second anomalous group velocity dispersion (GVD), self phase modulation (SPM), and two photon absorption used to describe pulse evolution. An analytical method has been used to understand and to quantify the role of the SA parameter on the propagation dynamics of pulse laser. We compute the chirp, power, width and phase of the soliton for range
... Show MorePeople are comfortable with e-banking services, but they are exposed to a great deal of danger these days due to fraudulent acts such as password hacking and personal information theft. Everything individuals do online relies heavily on passwords. Using a password protects one's identity online, in forums, and through email. Online transactions are vulnerable to identity theft if they do not have a secure password. Internet users with critical statements are vulnerable to various assaults, including the theft and exploitation of user IDs and passwords. This paper introduces novel password encryption by fingerprint and a random number to make each password unique and robust against attacks, with a magnificent time elapsed o
... Show MorePolarization is an important property of light, which refers to the direction of electric field oscillations. Polarization modulation plays an essential role for polarization encoding quantum key distribution (QKD). Polarization is used to encode photons in the QKD systems. In this work, visible-range polarizers with optimal dimensions based on resonance grating waveguides have been numerically designed and investigated using the COMSOL Multiphysics Software. Two structures have been designed, namely a singlelayer metasurface grating (SLMG) polarizer and an interlayer metasurface grating (ILMG) polarizer. Both structures have demonstrated high extinction ratios, ~1.8·103 and 8.68·104 , and the bandwidths equal to 45 and 55 nm for th
... Show MorePreparation of identical independent photons is the core of many quantum applications such as entanglement swapping and entangling process. In this work, Hong-Ou-Mandel experiment was performed to evaluate the degree of indistinguishability between independent photons generated from two independent weak coherent sources working at 640 nm. The visibility was 46%, close to the theoretical limit of 50%. The implemented setup can be adopted in quantum key distribution experiments carried out with free space as the channel link, as all the devices and components used are operative in the visible range of the electromagnetic spectrum.
As result of exposure in low light-level are images with only a small number of
photons. Only the pixels in which arrive the photopulse have an intensity value
different from zero. This paper presents an easy and fast procedure for simulating
low light-level images by taking a standard well illuminated image as a reference.
The images so obtained are composed by a few illuminated pixels on a dark
background. When the number of illuminated pixels is less than 0.01% of the total
pixels number it is difficult to identify the original object.
The traditional technique of generating MPSK signals is basically to use IQ modulator that involves analog processing like multiplication and addition where inaccuracies may exist and would lead to imbalance problems that affects the output modulated signal and hence the overall performance of the system. In this paper, a simple method is presented for generating the MPSK using logic circuits that basically generated M-carrier signals each carrier of different equally spaced phase shift. Then these carriers are time multiplexed, according to the data symbols, into the output modulated signal.