E-learning has recently become of great importance, especially after the emergence of the Corona pandemic, but e-learning has many disadvantages. In order to preserve education, some universities have resorted to using blended learning. Currently, the Ministry of Higher Education and Scientific Research in Iraq has adopted e-learning in universities and schools, especially in scientific disciplines that need laboratories and a spatial presence. In this work, we collected a dataset based on 27 features and presented a model utilizing a support vector machine with regression that was enhanced with the KNN method, which identifies factors that have a substantial influence on the model for the type of education, whether blended or traditional.
Furthermore, the dataset used was primarily focused on three key factors: personal information, the impact of e-Learning platforms, and the influence of the Corona virus. The attributes that were measured revealed that social status, computer skills, and the basic platform gave the user enough tools to continue the learning process. The size of the classrooms and laboratories that meet the health safety conditions is the most significant. The goal of our work is to discover a model that predicts how blended learning will be used during and after the coronavirus pandemic and to produce a model with minimal errors.
The current research aims to identify (the effect of CORT program on creative thinking for middle school students in the art education history of ancient art subject).
The research society continue of the5th of scientific students in ALsadreen secondary school of excellence which related of the Directorate of Education al-sader city, for the academic year (2015/2016), The sample was (35) students for each of the two groups (experimental and control). The equivalence between the research groups was carried out in the IQ variable, the age and the level of the father and mother.
The researcher used the experimental method of partial control and the post-test. If the course of
... Show MoreThis study is concerned with the topic of the constant and the variable within the artistic theatrical phenomenon and specifically the accompanying music for the movements, scenes and dramatized idea, which translates the Iraqi environments (the serious ones). The researcher, here, tries to determine those variables and constants as a methodological scientific study to serve the scientific and cultural institutions and contribute in settling them intellectually, and entering them in the academic environments that depend on studying the artistic associations between the theatrical science and musical science. We find that this study which addresses the topic (the constant and the variable in the theatrical show music for the department of
... Show MoreCumhuriyet Üniversitesi Fen-Edebiyat Fakültesi Sosyal Bilimler Dergisi | Volume: 48 Issue: 2
methodology six sigma Help to reduce defects by solving problems effectively, and works Lean to reduce losses through the flow of the manufacturing process and when integrating these two methodologies (Lean and six sigma), the methodology of Lean six sigma will form the entrance to the organizers of the optimization process and increase the quality and reduce lead times and costs . by focusing on the needs of the customer. this process uses statistical tools and techniques to analyze and improve processes.
We have conducted this research in the General Company for Electrical Industries and adopted its product (machine cooling water three taps) as a sample for research. In order to determine t
... Show MoreThis paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,
... Show MoreThis study was done in Baghdad teaching Hospital by using developed instrument type GIOHO and included a number of patients with compressed breast thickness (7,8,9,10)cm .
The relationship between radiation dose and breast thickness was linear. All results were compared with the international standered values that measured by the International Nuctear Agency and Europeon sources ,it was found that it is in consistance or has a little difference .
The study showed that the mean absorbed dose may be determined by using TLD measurement below 10 mGy and the glandular dose was (1.45 mGy) and this can not b
... Show MoreFace detection systems are based on the assumption that each individual has a unique face structure and that computerized face matching is possible using facial symmetry. Face recognition technology has been employed for security purposes in many organizations and businesses throughout the world. This research examines the classifications in machine learning approaches using feature extraction for the facial image detection system. Due to its high level of accuracy and speed, the Viola-Jones method is utilized for facial detection using the MUCT database. The LDA feature extraction method is applied as an input to three algorithms of machine learning approaches, which are the J48, OneR, and JRip classifiers. The experiment’s
... Show MoreThe proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show More