The huge amount of information in the internet makes rapid need of text
summarization. Text summarization is the process of selecting important sentences
from documents with keeping the main idea of the original documents. This paper
proposes a method depends on Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS). The first step in our model is based on extracting seven
features for each sentence in the documents set. Multiple Linear Regression (MLR)
is then used to assign a weight for the selected features. Then TOPSIS method
applied to rank the sentences. The sentences with high scores will be selected to be
included in the generated summary. The proposed model is evaluated using dataset
supplied by the Text Analysis Conference (TAC-2011) for English documents. The
performance of the proposed model is evaluated using Recall-Oriented Understudy
for Gisting Evaluation (ROUGE) metric. The obtained results support the
effectiveness of the proposed model.
A laboratory experiment was carried out in the laboratories of College of Agricultural Engineering Sciences, University of Baghdad in 2017. Three factors were studied; Sorghum bicolor L. cultivars (Inqath, Rabeh and Buhoth70), primed and unprimed seed, and salt stress (0, 6, 9 and 12 dS.m−1). The aim was to improve germination and seedling growth under salt stress. The results showed significant superiority of Buhoth70 cultivar compared to others, significantly superiority of primed seed compared to the unprimed and significant negative impact as long as increasing levels of salt stress at germination ratio, plumule length, dry seedling weight and seedling vigor index. The interaction between cultivars, priming and salt stress showed that
... Show MoreHuman perception involves many cognitive processes, such as memory, attention, and critical thinking. An important cognitive process is memory, which is usually connected with the storing and retrieval of information. Different colors and labeling have diverse physiological effects on humans. Our investigation aimed to determine if a change in color or labeling would have a significant effect on memory span and serial recall. However, our results do not support that coloring and labeling have significant impacts on a subject’s memory.
A modified Leslie-Gower predator-prey model with fear effect and nonlinear harvesting is developed and investigated in this study. The predator is supposed to feed on the prey using Holling type-II functional response. The goal is to see how fear of predation and presence of harvesting affect the model's dynamics. The system's positivity and boundlessness are demonstrated. All conceivable equilibria's existence and stability requirements are established. All sorts of local bifurcation occurrence conditions are presented. Extensive numerical simulations of the proposed model are shown in form of Phase portraits and direction fields. That is to guarantee the correctness of the theoretical results of the dynamic behavior of the system and t
... Show MoreGrey system theory is a multidisciplinary scientific approach, which deals with systems that have partially unknown information (small sample and uncertain information). Grey modeling as an important component of such theory gives successful results with limited amount of data. Grey Models are divided into two types; univariate and multivariate grey models. The univariate grey model with one order derivative equation GM (1,1) is the base stone of the theory, it is considered the time series prediction model but it doesn’t take the relative factors in account. The traditional multivariate grey models GM(1,M) takes those factor in account but it has a complex structure and some defects in " modeling mechanism", "parameter estimation "and "m
... Show MoreThis paper presents an IoT smart building platform with fog and cloud computing capable of performing near real-time predictive analytics in fog nodes. The researchers explained thoroughly the internet of things in smart buildings, the big data analytics, and the fog and cloud computing technologies. They then presented the smart platform, its requirements, and its components. The datasets on which the analytics will be run will be displayed. The linear regression and the support vector regression data mining techniques are presented. Those two machine learning models are implemented with the appropriate techniques, starting by cleaning and preparing the data visualization and uncovering hidden information about the behavior of
... Show MoreIn regression testing, Test case prioritization (TCP) is a technique to arrange all the available test cases. TCP techniques can improve fault detection performance which is measured by the average percentage of fault detection (APFD). History-based TCP is one of the TCP techniques that consider the history of past data to prioritize test cases. The issue of equal priority allocation to test cases is a common problem for most TCP techniques. However, this problem has not been explored in history-based TCP techniques. To solve this problem in regression testing, most of the researchers resort to random sorting of test cases. This study aims to investigate equal priority in history-based TCP techniques. The first objective is to implement
... Show MoreThe security of message information has drawn more attention nowadays, so; cryptography has been used extensively. This research aims to generate secured cipher keys from retina information to increase the level of security. The proposed technique utilizes cryptography based on retina information. The main contribution is the original procedure used to generate three types of keys in one system from the retina vessel's end position and improve the technique of three systems, each with one key. The distances between the center of the diagonals of the retina image and the retina vessel's end (diagonal center-end (DCE)) represent the first key. The distances between the center of the radius of the retina and the retina vessel's end (ra
... Show MoreIn this article we derive two reliability mathematical expressions of two kinds of s-out of -k stress-strength model systems; and . Both stress and strength are assumed to have an Inverse Lomax distribution with unknown shape parameters and a common known scale parameter. The increase and decrease in the real values of the two reliabilities are studied according to the increase and decrease in the distribution parameters. Two estimation methods are used to estimate the distribution parameters and the reliabilities, which are Maximum Likelihood and Regression. A comparison is made between the estimators based on a simulation study by the mean squared error criteria, which revealed that the maximum likelihood estimator works the best.
Recently, biometric technologies are used widely due to their improved security that decreases cases of deception and theft. The biometric technologies use physical features and characters in the identification of individuals. The most common biometric technologies are: Iris, voice, fingerprint, handwriting and hand print. In this paper, two biometric recognition technologies are analyzed and compared, which are the iris and sound recognition techniques. The iris recognition technique recognizes persons by analyzing the main patterns in the iris structure, while the sound recognition technique identifies individuals depending on their unique voice characteristics or as called voice print. The comparison results show that the resul
... Show MoreForeign Object Debris (FOD) is defined as one of the major problems in the airline maintenance industry, reducing the levels of safety. A foreign object which may result in causing serious damage to an airplane, including engine problems and personal safety risks. Therefore, it is critical to detect FOD in place to guarantee the safety of airplanes flying. FOD detection systems in the past lacked an effective method for automatic material recognition as well as high speed and accuracy in detecting materials. This paper proposes the FOD model using a variety of feature extraction approaches like Gray-level Co-occurrence Matrix (GLCM) and Linear Discriminant Analysis (LDA) to extract features and Deep Learning (DL) for classifi
... Show More